![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hicli | Structured version Visualization version GIF version |
Description: Closure inference for inner product. (Contributed by NM, 1-Aug-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hicl.1 | ⊢ 𝐴 ∈ ℋ |
hicl.2 | ⊢ 𝐵 ∈ ℋ |
Ref | Expression |
---|---|
hicli | ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hicl.1 | . 2 ⊢ 𝐴 ∈ ℋ | |
2 | hicl.2 | . 2 ⊢ 𝐵 ∈ ℋ | |
3 | hicl 28217 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐴 ·ih 𝐵) ∈ ℂ) | |
4 | 1, 2, 3 | mp2an 710 | 1 ⊢ (𝐴 ·ih 𝐵) ∈ ℂ |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2127 (class class class)co 6801 ℂcc 10097 ℋchil 28056 ·ih csp 28059 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-sep 4921 ax-nul 4929 ax-pr 5043 ax-hfi 28216 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ral 3043 df-rex 3044 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-nul 4047 df-if 4219 df-sn 4310 df-pr 4312 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-id 5162 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-fv 6045 df-ov 6804 |
This theorem is referenced by: hisubcomi 28241 normlem0 28246 normlem2 28248 normlem3 28249 normlem7 28253 normlem8 28254 normlem9 28255 bcseqi 28257 norm-ii-i 28274 normpythi 28279 normpari 28291 polid2i 28294 bcsiALT 28316 h1de2i 28692 h1de2bi 28693 h1de2ctlem 28694 eigrei 28973 eigorthi 28976 lnopunilem1 29149 lnopunilem2 29150 |
Copyright terms: Public domain | W3C validator |