![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hial2eq2 | Structured version Visualization version GIF version |
Description: Two vectors whose inner product is always equal are equal. (Contributed by NM, 28-Jan-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hial2eq2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-his1 28067 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐴 ·ih 𝑥) = (∗‘(𝑥 ·ih 𝐴))) | |
2 | ax-his1 28067 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝐵 ·ih 𝑥) = (∗‘(𝑥 ·ih 𝐵))) | |
3 | 1, 2 | eqeqan12d 2667 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ (∗‘(𝑥 ·ih 𝐴)) = (∗‘(𝑥 ·ih 𝐵)))) |
4 | hicl 28065 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) | |
5 | 4 | ancoms 468 | . . . . . 6 ⊢ ((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐴) ∈ ℂ) |
6 | hicl 28065 | . . . . . . 7 ⊢ ((𝑥 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) | |
7 | 6 | ancoms 468 | . . . . . 6 ⊢ ((𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ) → (𝑥 ·ih 𝐵) ∈ ℂ) |
8 | cj11 13946 | . . . . . 6 ⊢ (((𝑥 ·ih 𝐴) ∈ ℂ ∧ (𝑥 ·ih 𝐵) ∈ ℂ) → ((∗‘(𝑥 ·ih 𝐴)) = (∗‘(𝑥 ·ih 𝐵)) ↔ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵))) | |
9 | 5, 7, 8 | syl2an 493 | . . . . 5 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ)) → ((∗‘(𝑥 ·ih 𝐴)) = (∗‘(𝑥 ·ih 𝐵)) ↔ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵))) |
10 | 3, 9 | bitr2d 269 | . . . 4 ⊢ (((𝐴 ∈ ℋ ∧ 𝑥 ∈ ℋ) ∧ (𝐵 ∈ ℋ ∧ 𝑥 ∈ ℋ)) → ((𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))) |
11 | 10 | anandirs 891 | . . 3 ⊢ (((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) ∧ 𝑥 ∈ ℋ) → ((𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))) |
12 | 11 | ralbidva 3014 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ ∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥))) |
13 | hial2eq 28091 | . 2 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝐴 ·ih 𝑥) = (𝐵 ·ih 𝑥) ↔ 𝐴 = 𝐵)) | |
14 | 12, 13 | bitrd 268 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (∀𝑥 ∈ ℋ (𝑥 ·ih 𝐴) = (𝑥 ·ih 𝐵) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ∀wral 2941 ‘cfv 5926 (class class class)co 6690 ℂcc 9972 ∗ccj 13880 ℋchil 27904 ·ih csp 27907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-hfvadd 27985 ax-hvcom 27986 ax-hvass 27987 ax-hv0cl 27988 ax-hvaddid 27989 ax-hfvmul 27990 ax-hvmulid 27991 ax-hvdistr2 27994 ax-hvmul0 27995 ax-hfi 28064 ax-his1 28067 ax-his2 28068 ax-his3 28069 ax-his4 28070 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-op 4217 df-uni 4469 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-id 5053 df-po 5064 df-so 5065 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-div 10723 df-2 11117 df-cj 13883 df-re 13884 df-im 13885 df-hvsub 27956 |
This theorem is referenced by: hoeq2 28818 adjvalval 28924 cnlnadjlem6 29059 adjlnop 29073 bra11 29095 |
Copyright terms: Public domain | W3C validator |