![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hi01 | Structured version Visualization version GIF version |
Description: Inner product with the 0 vector. (Contributed by NM, 29-May-1999.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hi01 | ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-hv0cl 28194 | . . . . 5 ⊢ 0ℎ ∈ ℋ | |
2 | ax-hvmul0 28201 | . . . . 5 ⊢ (0ℎ ∈ ℋ → (0 ·ℎ 0ℎ) = 0ℎ) | |
3 | 1, 2 | ax-mp 5 | . . . 4 ⊢ (0 ·ℎ 0ℎ) = 0ℎ |
4 | 3 | oveq1i 6802 | . . 3 ⊢ ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0ℎ ·ih 𝐴) |
5 | 0cn 10233 | . . . 4 ⊢ 0 ∈ ℂ | |
6 | ax-his3 28275 | . . . 4 ⊢ ((0 ∈ ℂ ∧ 0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) | |
7 | 5, 1, 6 | mp3an12 1561 | . . 3 ⊢ (𝐴 ∈ ℋ → ((0 ·ℎ 0ℎ) ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
8 | 4, 7 | syl5eqr 2818 | . 2 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = (0 · (0ℎ ·ih 𝐴))) |
9 | hicl 28271 | . . . 4 ⊢ ((0ℎ ∈ ℋ ∧ 𝐴 ∈ ℋ) → (0ℎ ·ih 𝐴) ∈ ℂ) | |
10 | 1, 9 | mpan 662 | . . 3 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) ∈ ℂ) |
11 | 10 | mul02d 10435 | . 2 ⊢ (𝐴 ∈ ℋ → (0 · (0ℎ ·ih 𝐴)) = 0) |
12 | 8, 11 | eqtrd 2804 | 1 ⊢ (𝐴 ∈ ℋ → (0ℎ ·ih 𝐴) = 0) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1630 ∈ wcel 2144 (class class class)co 6792 ℂcc 10135 0cc0 10137 · cmul 10142 ℋchil 28110 ·ℎ csm 28112 ·ih csp 28113 0ℎc0v 28115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-hv0cl 28194 ax-hvmul0 28201 ax-hfi 28270 ax-his3 28275 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-id 5157 df-po 5170 df-so 5171 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-ov 6795 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-pnf 10277 df-mnf 10278 df-ltxr 10280 |
This theorem is referenced by: hi02 28288 hiidge0 28289 his6 28290 hial0 28293 normgt0 28318 norm0 28319 ocsh 28476 0hmop 29176 adj0 29187 lnopeq0i 29200 leop3 29318 leoprf2 29320 leoprf 29321 idleop 29324 |
Copyright terms: Public domain | W3C validator |