![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhva | Structured version Visualization version GIF version |
Description: The group (addition) operation of Hilbert space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhva | ⊢ +ℎ = ( +𝑣 ‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
2 | 1 | hhnv 28356 | . 2 ⊢ 𝑈 ∈ NrmCVec |
3 | 1, 2 | h2hva 28165 | 1 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 〈cop 4320 ‘cfv 6031 +𝑣 cpv 27774 +ℎ cva 28111 ·ℎ csm 28112 normℎcno 28114 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-hilex 28190 ax-hfvadd 28191 ax-hvcom 28192 ax-hvass 28193 ax-hv0cl 28194 ax-hvaddid 28195 ax-hfvmul 28196 ax-hvmulid 28197 ax-hvmulass 28198 ax-hvdistr1 28199 ax-hvdistr2 28200 ax-hvmul0 28201 ax-hfi 28270 ax-his1 28273 ax-his2 28274 ax-his3 28275 ax-his4 28276 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-grpo 27681 df-gid 27682 df-ablo 27733 df-vc 27748 df-nv 27781 df-va 27784 df-hnorm 28159 df-hvsub 28162 |
This theorem is referenced by: hhba 28358 hh0v 28359 hhip 28368 hlimadd 28384 hhssabloilem 28452 hhsst 28457 hhshsslem2 28459 hhsssh2 28461 hhlnoi 29093 |
Copyright terms: Public domain | W3C validator |