HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssm Structured version   Visualization version   GIF version

Theorem hhsssm 28455
Description: The scalar multiplication operation on a subspace. (Contributed by NM, 8-Apr-2008.) (New usage is discouraged.)
Hypothesis
Ref Expression
hhss.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssm ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)

Proof of Theorem hhsssm
StepHypRef Expression
1 eqid 2771 . . 3 ( ·𝑠OLD𝑊) = ( ·𝑠OLD𝑊)
21smfval 27800 . 2 ( ·𝑠OLD𝑊) = (2nd ‘(1st𝑊))
3 hhss.1 . . . . 5 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
43fveq2i 6336 . . . 4 (1st𝑊) = (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩)
5 opex 5061 . . . . 5 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ V
6 normf 28320 . . . . . . 7 norm: ℋ⟶ℝ
7 ax-hilex 28196 . . . . . . 7 ℋ ∈ V
8 fex 6636 . . . . . . 7 ((norm: ℋ⟶ℝ ∧ ℋ ∈ V) → norm ∈ V)
96, 7, 8mp2an 672 . . . . . 6 norm ∈ V
109resex 5583 . . . . 5 (norm𝐻) ∈ V
115, 10op1st 7327 . . . 4 (1st ‘⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
124, 11eqtri 2793 . . 3 (1st𝑊) = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1312fveq2i 6336 . 2 (2nd ‘(1st𝑊)) = (2nd ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩)
14 hilablo 28357 . . . 4 + ∈ AbelOp
15 resexg 5582 . . . 4 ( + ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ V)
1614, 15ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ V
17 hvmulex 28208 . . . 4 · ∈ V
1817resex 5583 . . 3 ( · ↾ (ℂ × 𝐻)) ∈ V
1916, 18op2nd 7328 . 2 (2nd ‘⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩) = ( · ↾ (ℂ × 𝐻))
202, 13, 193eqtrri 2798 1 ( · ↾ (ℂ × 𝐻)) = ( ·𝑠OLD𝑊)
Colors of variables: wff setvar class
Syntax hints:   = wceq 1631  wcel 2145  Vcvv 3351  cop 4323   × cxp 5248  cres 5252  wf 6026  cfv 6030  1st c1st 7317  2nd c2nd 7318  cc 10140  cr 10141  AbelOpcablo 27738   ·𝑠OLD cns 27782  chil 28116   + cva 28117   · csm 28118  normcno 28120
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4905  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219  ax-pre-sup 10220  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvdistr2 28206  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his3 28281  ax-his4 28282
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8508  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-div 10891  df-nn 11227  df-2 11285  df-3 11286  df-n0 11500  df-z 11585  df-uz 11894  df-rp 12036  df-seq 13009  df-exp 13068  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-grpo 27687  df-ablo 27739  df-sm 27792  df-hnorm 28165  df-hvsub 28168
This theorem is referenced by:  hhsst  28463  hhsssh2  28467
  Copyright terms: Public domain W3C validator