HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhsssh Structured version   Visualization version   GIF version

Theorem hhsssh 28427
Description: The predicate "𝐻 is a subspace of Hilbert space." (Contributed by NM, 25-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhsst.1 𝑈 = ⟨⟨ + , · ⟩, norm
hhsst.2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
Assertion
Ref Expression
hhsssh (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))

Proof of Theorem hhsssh
StepHypRef Expression
1 hhsst.1 . . . 4 𝑈 = ⟨⟨ + , · ⟩, norm
2 hhsst.2 . . . 4 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
31, 2hhsst 28424 . . 3 (𝐻S𝑊 ∈ (SubSp‘𝑈))
4 shss 28368 . . 3 (𝐻S𝐻 ⊆ ℋ)
53, 4jca 555 . 2 (𝐻S → (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
6 eleq1 2819 . . 3 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻S ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S ))
7 eqid 2752 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩
8 xpeq1 5272 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻))
9 xpeq2 5278 . . . . . . . . . . . . 13 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
108, 9eqtrd 2786 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 × 𝐻) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1110reseq2d 5543 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ (𝐻 × 𝐻)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
12 xpeq2 5278 . . . . . . . . . . . 12 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × 𝐻) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1312reseq2d 5543 . . . . . . . . . . 11 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × 𝐻)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
1411, 13opeq12d 4553 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
15 reseq2 5538 . . . . . . . . . 10 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm𝐻) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
1614, 15opeq12d 4553 . . . . . . . . 9 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
172, 16syl5eq 2798 . . . . . . . 8 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → 𝑊 = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
1817eleq1d 2816 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝑊 ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
19 sseq1 3759 . . . . . . 7 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (𝐻 ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
2018, 19anbi12d 749 . . . . . 6 (𝐻 = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
21 xpeq1 5272 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ))
22 xpeq2 5278 . . . . . . . . . . . 12 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2321, 22eqtrd 2786 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ × ℋ) = (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2423reseq2d 5543 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( + ↾ ( ℋ × ℋ)) = ( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
25 xpeq2 5278 . . . . . . . . . . 11 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (ℂ × ℋ) = (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2625reseq2d 5543 . . . . . . . . . 10 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( · ↾ (ℂ × ℋ)) = ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))))
2724, 26opeq12d 4553 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩)
28 reseq2 5538 . . . . . . . . 9 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (norm ↾ ℋ) = (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))
2927, 28opeq12d 4553 . . . . . . . 8 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩)
3029eleq1d 2816 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ↔ ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)))
31 sseq1 3759 . . . . . . 7 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ( ℋ ⊆ ℋ ↔ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ))
3230, 31anbi12d 749 . . . . . 6 ( ℋ = if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) → ((⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ) ↔ (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)))
33 ax-hfvadd 28158 . . . . . . . . . . . 12 + :( ℋ × ℋ)⟶ ℋ
34 ffn 6198 . . . . . . . . . . . 12 ( + :( ℋ × ℋ)⟶ ℋ → + Fn ( ℋ × ℋ))
35 fnresdm 6153 . . . . . . . . . . . 12 ( + Fn ( ℋ × ℋ) → ( + ↾ ( ℋ × ℋ)) = + )
3633, 34, 35mp2b 10 . . . . . . . . . . 11 ( + ↾ ( ℋ × ℋ)) = +
37 ax-hfvmul 28163 . . . . . . . . . . . 12 · :(ℂ × ℋ)⟶ ℋ
38 ffn 6198 . . . . . . . . . . . 12 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
39 fnresdm 6153 . . . . . . . . . . . 12 ( · Fn (ℂ × ℋ) → ( · ↾ (ℂ × ℋ)) = · )
4037, 38, 39mp2b 10 . . . . . . . . . . 11 ( · ↾ (ℂ × ℋ)) = ·
4136, 40opeq12i 4550 . . . . . . . . . 10 ⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩ = ⟨ + , ·
42 normf 28281 . . . . . . . . . . 11 norm: ℋ⟶ℝ
43 ffn 6198 . . . . . . . . . . 11 (norm: ℋ⟶ℝ → norm Fn ℋ)
44 fnresdm 6153 . . . . . . . . . . 11 (norm Fn ℋ → (norm ↾ ℋ) = norm)
4542, 43, 44mp2b 10 . . . . . . . . . 10 (norm ↾ ℋ) = norm
4641, 45opeq12i 4550 . . . . . . . . 9 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = ⟨⟨ + , · ⟩, norm
4746, 1eqtr4i 2777 . . . . . . . 8 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ = 𝑈
481hhnv 28323 . . . . . . . . 9 𝑈 ∈ NrmCVec
49 eqid 2752 . . . . . . . . . 10 (SubSp‘𝑈) = (SubSp‘𝑈)
5049sspid 27881 . . . . . . . . 9 (𝑈 ∈ NrmCVec → 𝑈 ∈ (SubSp‘𝑈))
5148, 50ax-mp 5 . . . . . . . 8 𝑈 ∈ (SubSp‘𝑈)
5247, 51eqeltri 2827 . . . . . . 7 ⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈)
53 ssid 3757 . . . . . . 7 ℋ ⊆ ℋ
5452, 53pm3.2i 470 . . . . . 6 (⟨⟨( + ↾ ( ℋ × ℋ)), ( · ↾ (ℂ × ℋ))⟩, (norm ↾ ℋ)⟩ ∈ (SubSp‘𝑈) ∧ ℋ ⊆ ℋ)
5520, 32, 54elimhyp 4282 . . . . 5 (⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈) ∧ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ)
5655simpli 476 . . . 4 ⟨⟨( + ↾ (if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))), ( · ↾ (ℂ × if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ)))⟩, (norm ↾ if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ))⟩ ∈ (SubSp‘𝑈)
5755simpri 481 . . . 4 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ⊆ ℋ
581, 7, 56, 57hhshsslem2 28426 . . 3 if((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ), 𝐻, ℋ) ∈ S
596, 58dedth 4275 . 2 ((𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ) → 𝐻S )
605, 59impbii 199 1 (𝐻S ↔ (𝑊 ∈ (SubSp‘𝑈) ∧ 𝐻 ⊆ ℋ))
Colors of variables: wff setvar class
Syntax hints:  wb 196  wa 383   = wceq 1624  wcel 2131  wss 3707  ifcif 4222  cop 4319   × cxp 5256  cres 5260   Fn wfn 6036  wf 6037  cfv 6041  cc 10118  cr 10119  NrmCVeccnv 27740  SubSpcss 27877  chil 28077   + cva 28078   · csm 28079  normcno 28081   S csh 28086
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-8 2133  ax-9 2140  ax-10 2160  ax-11 2175  ax-12 2188  ax-13 2383  ax-ext 2732  ax-rep 4915  ax-sep 4925  ax-nul 4933  ax-pow 4984  ax-pr 5047  ax-un 7106  ax-cnex 10176  ax-resscn 10177  ax-1cn 10178  ax-icn 10179  ax-addcl 10180  ax-addrcl 10181  ax-mulcl 10182  ax-mulrcl 10183  ax-mulcom 10184  ax-addass 10185  ax-mulass 10186  ax-distr 10187  ax-i2m1 10188  ax-1ne0 10189  ax-1rid 10190  ax-rnegex 10191  ax-rrecex 10192  ax-cnre 10193  ax-pre-lttri 10194  ax-pre-lttrn 10195  ax-pre-ltadd 10196  ax-pre-mulgt0 10197  ax-pre-sup 10198  ax-addf 10199  ax-mulf 10200  ax-hilex 28157  ax-hfvadd 28158  ax-hvcom 28159  ax-hvass 28160  ax-hv0cl 28161  ax-hvaddid 28162  ax-hfvmul 28163  ax-hvmulid 28164  ax-hvmulass 28165  ax-hvdistr1 28166  ax-hvdistr2 28167  ax-hvmul0 28168  ax-hfi 28237  ax-his1 28240  ax-his2 28241  ax-his3 28242  ax-his4 28243
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1627  df-ex 1846  df-nf 1851  df-sb 2039  df-eu 2603  df-mo 2604  df-clab 2739  df-cleq 2745  df-clel 2748  df-nfc 2883  df-ne 2925  df-nel 3028  df-ral 3047  df-rex 3048  df-reu 3049  df-rmo 3050  df-rab 3051  df-v 3334  df-sbc 3569  df-csb 3667  df-dif 3710  df-un 3712  df-in 3714  df-ss 3721  df-pss 3723  df-nul 4051  df-if 4223  df-pw 4296  df-sn 4314  df-pr 4316  df-tp 4318  df-op 4320  df-uni 4581  df-iun 4666  df-br 4797  df-opab 4857  df-mpt 4874  df-tr 4897  df-id 5166  df-eprel 5171  df-po 5179  df-so 5180  df-fr 5217  df-we 5219  df-xp 5264  df-rel 5265  df-cnv 5266  df-co 5267  df-dm 5268  df-rn 5269  df-res 5270  df-ima 5271  df-pred 5833  df-ord 5879  df-on 5880  df-lim 5881  df-suc 5882  df-iota 6004  df-fun 6043  df-fn 6044  df-f 6045  df-f1 6046  df-fo 6047  df-f1o 6048  df-fv 6049  df-riota 6766  df-ov 6808  df-oprab 6809  df-mpt2 6810  df-om 7223  df-1st 7325  df-2nd 7326  df-wrecs 7568  df-recs 7629  df-rdg 7667  df-er 7903  df-map 8017  df-pm 8018  df-en 8114  df-dom 8115  df-sdom 8116  df-sup 8505  df-inf 8506  df-pnf 10260  df-mnf 10261  df-xr 10262  df-ltxr 10263  df-le 10264  df-sub 10452  df-neg 10453  df-div 10869  df-nn 11205  df-2 11263  df-3 11264  df-4 11265  df-n0 11477  df-z 11562  df-uz 11872  df-q 11974  df-rp 12018  df-xneg 12131  df-xadd 12132  df-xmul 12133  df-icc 12367  df-seq 12988  df-exp 13047  df-cj 14030  df-re 14031  df-im 14032  df-sqrt 14166  df-abs 14167  df-topgen 16298  df-psmet 19932  df-xmet 19933  df-met 19934  df-bl 19935  df-mopn 19936  df-top 20893  df-topon 20910  df-bases 20944  df-lm 21227  df-haus 21313  df-grpo 27648  df-gid 27649  df-ginv 27650  df-gdiv 27651  df-ablo 27700  df-vc 27715  df-nv 27748  df-va 27751  df-ba 27752  df-sm 27753  df-0v 27754  df-vs 27755  df-nmcv 27756  df-ims 27757  df-ssp 27878  df-hnorm 28126  df-hba 28127  df-hvsub 28129  df-hlim 28130  df-sh 28365  df-ch 28379  df-ch0 28411
This theorem is referenced by:  hhsssh2  28428
  Copyright terms: Public domain W3C validator