Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hhssnv Structured version   Visualization version   GIF version

Theorem hhssnv 28249
 Description: Normed complex vector space property of a subspace. (Contributed by NM, 26-Mar-2008.) (New usage is discouraged.)
Hypotheses
Ref Expression
hhssnvt.1 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
hhssnv.2 𝐻S
Assertion
Ref Expression
hhssnv 𝑊 ∈ NrmCVec

Proof of Theorem hhssnv
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hhssnv.2 . . . . 5 𝐻S
21hhssabloi 28247 . . . 4 ( + ↾ (𝐻 × 𝐻)) ∈ AbelOp
3 ablogrpo 27529 . . . 4 (( + ↾ (𝐻 × 𝐻)) ∈ AbelOp → ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp)
42, 3ax-mp 5 . . 3 ( + ↾ (𝐻 × 𝐻)) ∈ GrpOp
51shssii 28198 . . . . . 6 𝐻 ⊆ ℋ
6 xpss12 5158 . . . . . 6 ((𝐻 ⊆ ℋ ∧ 𝐻 ⊆ ℋ) → (𝐻 × 𝐻) ⊆ ( ℋ × ℋ))
75, 5, 6mp2an 708 . . . . 5 (𝐻 × 𝐻) ⊆ ( ℋ × ℋ)
8 ax-hfvadd 27985 . . . . . 6 + :( ℋ × ℋ)⟶ ℋ
98fdmi 6090 . . . . 5 dom + = ( ℋ × ℋ)
107, 9sseqtr4i 3671 . . . 4 (𝐻 × 𝐻) ⊆ dom +
11 ssdmres 5455 . . . 4 ((𝐻 × 𝐻) ⊆ dom + ↔ dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻))
1210, 11mpbi 220 . . 3 dom ( + ↾ (𝐻 × 𝐻)) = (𝐻 × 𝐻)
134, 12grporn 27503 . 2 𝐻 = ran ( + ↾ (𝐻 × 𝐻))
14 sh0 28201 . . . . . 6 (𝐻S → 0𝐻)
151, 14ax-mp 5 . . . . 5 0𝐻
16 ovres 6842 . . . . 5 ((0𝐻 ∧ 0𝐻) → (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0))
1715, 15, 16mp2an 708 . . . 4 (0( + ↾ (𝐻 × 𝐻))0) = (0 + 0)
18 ax-hv0cl 27988 . . . . 5 0 ∈ ℋ
1918hvaddid2i 28014 . . . 4 (0 + 0) = 0
2017, 19eqtri 2673 . . 3 (0( + ↾ (𝐻 × 𝐻))0) = 0
21 eqid 2651 . . . . 5 (GId‘( + ↾ (𝐻 × 𝐻))) = (GId‘( + ↾ (𝐻 × 𝐻)))
2213, 21grpoid 27502 . . . 4 ((( + ↾ (𝐻 × 𝐻)) ∈ GrpOp ∧ 0𝐻) → (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0))
234, 15, 22mp2an 708 . . 3 (0 = (GId‘( + ↾ (𝐻 × 𝐻))) ↔ (0( + ↾ (𝐻 × 𝐻))0) = 0)
2420, 23mpbir 221 . 2 0 = (GId‘( + ↾ (𝐻 × 𝐻)))
25 ax-hfvmul 27990 . . . . . 6 · :(ℂ × ℋ)⟶ ℋ
26 ffn 6083 . . . . . 6 ( · :(ℂ × ℋ)⟶ ℋ → · Fn (ℂ × ℋ))
2725, 26ax-mp 5 . . . . 5 · Fn (ℂ × ℋ)
28 ssid 3657 . . . . . 6 ℂ ⊆ ℂ
29 xpss12 5158 . . . . . 6 ((ℂ ⊆ ℂ ∧ 𝐻 ⊆ ℋ) → (ℂ × 𝐻) ⊆ (ℂ × ℋ))
3028, 5, 29mp2an 708 . . . . 5 (ℂ × 𝐻) ⊆ (ℂ × ℋ)
31 fnssres 6042 . . . . 5 (( · Fn (ℂ × ℋ) ∧ (ℂ × 𝐻) ⊆ (ℂ × ℋ)) → ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻))
3227, 30, 31mp2an 708 . . . 4 ( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻)
33 ovelrn 6852 . . . . . . 7 (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) → (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦)))
3432, 33ax-mp 5 . . . . . 6 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) ↔ ∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦))
35 ovres 6842 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) = (𝑥 · 𝑦))
36 shmulcl 28203 . . . . . . . . . 10 ((𝐻S𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
371, 36mp3an1 1451 . . . . . . . . 9 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥 · 𝑦) ∈ 𝐻)
3835, 37eqeltrd 2730 . . . . . . . 8 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻)
39 eleq1 2718 . . . . . . . 8 (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → (𝑧𝐻 ↔ (𝑥( · ↾ (ℂ × 𝐻))𝑦) ∈ 𝐻))
4038, 39syl5ibrcom 237 . . . . . . 7 ((𝑥 ∈ ℂ ∧ 𝑦𝐻) → (𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻))
4140rexlimivv 3065 . . . . . 6 (∃𝑥 ∈ ℂ ∃𝑦𝐻 𝑧 = (𝑥( · ↾ (ℂ × 𝐻))𝑦) → 𝑧𝐻)
4234, 41sylbi 207 . . . . 5 (𝑧 ∈ ran ( · ↾ (ℂ × 𝐻)) → 𝑧𝐻)
4342ssriv 3640 . . . 4 ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻
44 df-f 5930 . . . 4 (( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻 ↔ (( · ↾ (ℂ × 𝐻)) Fn (ℂ × 𝐻) ∧ ran ( · ↾ (ℂ × 𝐻)) ⊆ 𝐻))
4532, 43, 44mpbir2an 975 . . 3 ( · ↾ (ℂ × 𝐻)):(ℂ × 𝐻)⟶𝐻
46 ax-1cn 10032 . . . . 5 1 ∈ ℂ
47 ovres 6842 . . . . 5 ((1 ∈ ℂ ∧ 𝑥𝐻) → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
4846, 47mpan 706 . . . 4 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = (1 · 𝑥))
491sheli 28199 . . . . 5 (𝑥𝐻𝑥 ∈ ℋ)
50 ax-hvmulid 27991 . . . . 5 (𝑥 ∈ ℋ → (1 · 𝑥) = 𝑥)
5149, 50syl 17 . . . 4 (𝑥𝐻 → (1 · 𝑥) = 𝑥)
5248, 51eqtrd 2685 . . 3 (𝑥𝐻 → (1( · ↾ (ℂ × 𝐻))𝑥) = 𝑥)
53 id 22 . . . . 5 (𝑦 ∈ ℂ → 𝑦 ∈ ℂ)
541sheli 28199 . . . . 5 (𝑧𝐻𝑧 ∈ ℋ)
55 ax-hvdistr1 27993 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ ∧ 𝑧 ∈ ℋ) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
5653, 49, 54, 55syl3an 1408 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · (𝑥 + 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
57 ovres 6842 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
58573adant1 1099 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑧) = (𝑥 + 𝑧))
5958oveq2d 6706 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)))
60 shaddcl 28202 . . . . . . . 8 ((𝐻S𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
611, 60mp3an1 1451 . . . . . . 7 ((𝑥𝐻𝑧𝐻) → (𝑥 + 𝑧) ∈ 𝐻)
62 ovres 6842 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑥 + 𝑧) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6361, 62sylan2 490 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑥𝐻𝑧𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
64633impb 1279 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥 + 𝑧)) = (𝑦 · (𝑥 + 𝑧)))
6559, 64eqtrd 2685 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = (𝑦 · (𝑥 + 𝑧)))
66 ovres 6842 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
67663adant3 1101 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
68 ovres 6842 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
69683adant2 1100 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑧) = (𝑦 · 𝑧))
7067, 69oveq12d 6708 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)))
71 shmulcl 28203 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
721, 71mp3an1 1451 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
73723adant3 1101 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
74 shmulcl 28203 . . . . . . . 8 ((𝐻S𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
751, 74mp3an1 1451 . . . . . . 7 ((𝑦 ∈ ℂ ∧ 𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
76753adant2 1100 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦 · 𝑧) ∈ 𝐻)
7773, 76ovresd 6843 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑦 · 𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7870, 77eqtrd 2685 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)) = ((𝑦 · 𝑥) + (𝑦 · 𝑧)))
7956, 65, 783eqtr4d 2695 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻𝑧𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑥( + ↾ (𝐻 × 𝐻))𝑧)) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑦( · ↾ (ℂ × 𝐻))𝑧)))
80 ax-hvdistr2 27994 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
8149, 80syl3an3 1401 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧) · 𝑥) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
82 addcl 10056 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 + 𝑧) ∈ ℂ)
83 ovres 6842 . . . . 5 (((𝑦 + 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
8482, 83stoic3 1741 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 + 𝑧) · 𝑥))
85663adant2 1100 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))𝑥) = (𝑦 · 𝑥))
86 ovres 6842 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
87863adant1 1099 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧( · ↾ (ℂ × 𝐻))𝑥) = (𝑧 · 𝑥))
8885, 87oveq12d 6708 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)))
89723adant2 1100 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦 · 𝑥) ∈ 𝐻)
90 shmulcl 28203 . . . . . . . 8 ((𝐻S𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
911, 90mp3an1 1451 . . . . . . 7 ((𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
92913adant1 1099 . . . . . 6 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑧 · 𝑥) ∈ 𝐻)
9389, 92ovresd 6843 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑥)( + ↾ (𝐻 × 𝐻))(𝑧 · 𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9488, 93eqtrd 2685 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = ((𝑦 · 𝑥) + (𝑧 · 𝑥)))
9581, 84, 943eqtr4d 2695 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 + 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦( · ↾ (ℂ × 𝐻))𝑥)( + ↾ (𝐻 × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
96 ax-hvmulass 27992 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥 ∈ ℋ) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
9749, 96syl3an3 1401 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧) · 𝑥) = (𝑦 · (𝑧 · 𝑥)))
98 mulcl 10058 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ) → (𝑦 · 𝑧) ∈ ℂ)
99 ovres 6842 . . . . 5 (((𝑦 · 𝑧) ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10098, 99stoic3 1741 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = ((𝑦 · 𝑧) · 𝑥))
10187oveq2d 6706 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)))
102 ovres 6842 . . . . . . 7 ((𝑦 ∈ ℂ ∧ (𝑧 · 𝑥) ∈ 𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10391, 102sylan2 490 . . . . . 6 ((𝑦 ∈ ℂ ∧ (𝑧 ∈ ℂ ∧ 𝑥𝐻)) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
1041033impb 1279 . . . . 5 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧 · 𝑥)) = (𝑦 · (𝑧 · 𝑥)))
105101, 104eqtrd 2685 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)) = (𝑦 · (𝑧 · 𝑥)))
10697, 100, 1053eqtr4d 2695 . . 3 ((𝑦 ∈ ℂ ∧ 𝑧 ∈ ℂ ∧ 𝑥𝐻) → ((𝑦 · 𝑧)( · ↾ (ℂ × 𝐻))𝑥) = (𝑦( · ↾ (ℂ × 𝐻))(𝑧( · ↾ (ℂ × 𝐻))𝑥)))
107 eqid 2651 . . 3 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ = ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩
1082, 12, 45, 52, 79, 95, 106, 107isvciOLD 27563 . 2 ⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩ ∈ CVecOLD
109 normf 28108 . . 3 norm: ℋ⟶ℝ
110 fssres 6108 . . 3 ((norm: ℋ⟶ℝ ∧ 𝐻 ⊆ ℋ) → (norm𝐻):𝐻⟶ℝ)
111109, 5, 110mp2an 708 . 2 (norm𝐻):𝐻⟶ℝ
112 fvres 6245 . . . . 5 (𝑥𝐻 → ((norm𝐻)‘𝑥) = (norm𝑥))
113112eqeq1d 2653 . . . 4 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ (norm𝑥) = 0))
114 norm-i 28114 . . . . 5 (𝑥 ∈ ℋ → ((norm𝑥) = 0 ↔ 𝑥 = 0))
11549, 114syl 17 . . . 4 (𝑥𝐻 → ((norm𝑥) = 0 ↔ 𝑥 = 0))
116113, 115bitrd 268 . . 3 (𝑥𝐻 → (((norm𝐻)‘𝑥) = 0 ↔ 𝑥 = 0))
117116biimpa 500 . 2 ((𝑥𝐻 ∧ ((norm𝐻)‘𝑥) = 0) → 𝑥 = 0)
118 norm-iii 28125 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
11949, 118sylan2 490 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → (norm‘(𝑦 · 𝑥)) = ((abs‘𝑦) · (norm𝑥)))
12066fveq2d 6233 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((norm𝐻)‘(𝑦 · 𝑥)))
121 fvres 6245 . . . . 5 ((𝑦 · 𝑥) ∈ 𝐻 → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
12272, 121syl 17 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦 · 𝑥)) = (norm‘(𝑦 · 𝑥)))
123120, 122eqtrd 2685 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = (norm‘(𝑦 · 𝑥)))
124112adantl 481 . . . 4 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘𝑥) = (norm𝑥))
125124oveq2d 6706 . . 3 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((abs‘𝑦) · ((norm𝐻)‘𝑥)) = ((abs‘𝑦) · (norm𝑥)))
126119, 123, 1253eqtr4d 2695 . 2 ((𝑦 ∈ ℂ ∧ 𝑥𝐻) → ((norm𝐻)‘(𝑦( · ↾ (ℂ × 𝐻))𝑥)) = ((abs‘𝑦) · ((norm𝐻)‘𝑥)))
1271sheli 28199 . . . 4 (𝑦𝐻𝑦 ∈ ℋ)
128 norm-ii 28123 . . . 4 ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
12949, 127, 128syl2an 493 . . 3 ((𝑥𝐻𝑦𝐻) → (norm‘(𝑥 + 𝑦)) ≤ ((norm𝑥) + (norm𝑦)))
130 ovres 6842 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥( + ↾ (𝐻 × 𝐻))𝑦) = (𝑥 + 𝑦))
131130fveq2d 6233 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = ((norm𝐻)‘(𝑥 + 𝑦)))
132 shaddcl 28202 . . . . . 6 ((𝐻S𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
1331, 132mp3an1 1451 . . . . 5 ((𝑥𝐻𝑦𝐻) → (𝑥 + 𝑦) ∈ 𝐻)
134 fvres 6245 . . . . 5 ((𝑥 + 𝑦) ∈ 𝐻 → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
135133, 134syl 17 . . . 4 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥 + 𝑦)) = (norm‘(𝑥 + 𝑦)))
136131, 135eqtrd 2685 . . 3 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) = (norm‘(𝑥 + 𝑦)))
137 fvres 6245 . . . 4 (𝑦𝐻 → ((norm𝐻)‘𝑦) = (norm𝑦))
138112, 137oveqan12d 6709 . . 3 ((𝑥𝐻𝑦𝐻) → (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)) = ((norm𝑥) + (norm𝑦)))
139129, 136, 1383brtr4d 4717 . 2 ((𝑥𝐻𝑦𝐻) → ((norm𝐻)‘(𝑥( + ↾ (𝐻 × 𝐻))𝑦)) ≤ (((norm𝐻)‘𝑥) + ((norm𝐻)‘𝑦)))
140 hhssnvt.1 . 2 𝑊 = ⟨⟨( + ↾ (𝐻 × 𝐻)), ( · ↾ (ℂ × 𝐻))⟩, (norm𝐻)⟩
14113, 24, 108, 111, 117, 126, 139, 140isnvi 27596 1 𝑊 ∈ NrmCVec
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 196   ∧ wa 383   ∧ w3a 1054   = wceq 1523   ∈ wcel 2030  ∃wrex 2942   ⊆ wss 3607  ⟨cop 4216   class class class wbr 4685   × cxp 5141  dom cdm 5143  ran crn 5144   ↾ cres 5145   Fn wfn 5921  ⟶wf 5922  ‘cfv 5926  (class class class)co 6690  ℂcc 9972  ℝcr 9973  0cc0 9974  1c1 9975   + caddc 9977   · cmul 9979   ≤ cle 10113  abscabs 14018  GrpOpcgr 27471  GIdcgi 27472  AbelOpcablo 27526  NrmCVeccnv 27567   ℋchil 27904   +ℎ cva 27905   ·ℎ csm 27906  normℎcno 27908  0ℎc0v 27909   Sℋ csh 27913 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991  ax-cnex 10030  ax-resscn 10031  ax-1cn 10032  ax-icn 10033  ax-addcl 10034  ax-addrcl 10035  ax-mulcl 10036  ax-mulrcl 10037  ax-mulcom 10038  ax-addass 10039  ax-mulass 10040  ax-distr 10041  ax-i2m1 10042  ax-1ne0 10043  ax-1rid 10044  ax-rnegex 10045  ax-rrecex 10046  ax-cnre 10047  ax-pre-lttri 10048  ax-pre-lttrn 10049  ax-pre-ltadd 10050  ax-pre-mulgt0 10051  ax-pre-sup 10052  ax-hilex 27984  ax-hfvadd 27985  ax-hvcom 27986  ax-hvass 27987  ax-hv0cl 27988  ax-hvaddid 27989  ax-hfvmul 27990  ax-hvmulid 27991  ax-hvmulass 27992  ax-hvdistr1 27993  ax-hvdistr2 27994  ax-hvmul0 27995  ax-hfi 28064  ax-his1 28067  ax-his2 28068  ax-his3 28069  ax-his4 28070 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1055  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-nel 2927  df-ral 2946  df-rex 2947  df-reu 2948  df-rmo 2949  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-pss 3623  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-tp 4215  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-tr 4786  df-id 5053  df-eprel 5058  df-po 5064  df-so 5065  df-fr 5102  df-we 5104  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-pred 5718  df-ord 5764  df-on 5765  df-lim 5766  df-suc 5767  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-oprab 6694  df-mpt2 6695  df-om 7108  df-1st 7210  df-2nd 7211  df-wrecs 7452  df-recs 7513  df-rdg 7551  df-er 7787  df-en 7998  df-dom 7999  df-sdom 8000  df-sup 8389  df-pnf 10114  df-mnf 10115  df-xr 10116  df-ltxr 10117  df-le 10118  df-sub 10306  df-neg 10307  df-div 10723  df-nn 11059  df-2 11117  df-3 11118  df-4 11119  df-n0 11331  df-z 11416  df-uz 11726  df-rp 11871  df-seq 12842  df-exp 12901  df-cj 13883  df-re 13884  df-im 13885  df-sqrt 14019  df-abs 14020  df-grpo 27475  df-gid 27476  df-ginv 27477  df-ablo 27527  df-vc 27542  df-nv 27575  df-va 27578  df-ba 27579  df-sm 27580  df-0v 27581  df-nmcv 27583  df-hnorm 27953  df-hba 27954  df-hvsub 27956  df-sh 28192 This theorem is referenced by:  hhssnvt  28250  hhssvsf  28258  hhssims  28260  hhssmet  28262  hhssmetdval  28263  hhssbn  28265
 Copyright terms: Public domain W3C validator