![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhshsslem2 | Structured version Visualization version GIF version |
Description: Lemma for hhsssh 28457. (Contributed by NM, 6-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhsst.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhsst.2 | ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 |
hhssp3.3 | ⊢ 𝑊 ∈ (SubSp‘𝑈) |
hhssp3.4 | ⊢ 𝐻 ⊆ ℋ |
Ref | Expression |
---|---|
hhshsslem2 | ⊢ 𝐻 ∈ Sℋ |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhssp3.4 | . . 3 ⊢ 𝐻 ⊆ ℋ | |
2 | hhsst.1 | . . . . . 6 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | 2 | hhnv 28353 | . . . . 5 ⊢ 𝑈 ∈ NrmCVec |
4 | hhssp3.3 | . . . . 5 ⊢ 𝑊 ∈ (SubSp‘𝑈) | |
5 | 2 | hh0v 28356 | . . . . . 6 ⊢ 0ℎ = (0vec‘𝑈) |
6 | eqid 2761 | . . . . . 6 ⊢ (0vec‘𝑊) = (0vec‘𝑊) | |
7 | eqid 2761 | . . . . . 6 ⊢ (SubSp‘𝑈) = (SubSp‘𝑈) | |
8 | 5, 6, 7 | sspz 27921 | . . . . 5 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → (0vec‘𝑊) = 0ℎ) |
9 | 3, 4, 8 | mp2an 710 | . . . 4 ⊢ (0vec‘𝑊) = 0ℎ |
10 | 7 | sspnv 27912 | . . . . . . 7 ⊢ ((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) → 𝑊 ∈ NrmCVec) |
11 | 3, 4, 10 | mp2an 710 | . . . . . 6 ⊢ 𝑊 ∈ NrmCVec |
12 | eqid 2761 | . . . . . . 7 ⊢ (BaseSet‘𝑊) = (BaseSet‘𝑊) | |
13 | 12, 6 | nvzcl 27820 | . . . . . 6 ⊢ (𝑊 ∈ NrmCVec → (0vec‘𝑊) ∈ (BaseSet‘𝑊)) |
14 | 11, 13 | ax-mp 5 | . . . . 5 ⊢ (0vec‘𝑊) ∈ (BaseSet‘𝑊) |
15 | hhsst.2 | . . . . . 6 ⊢ 𝑊 = 〈〈( +ℎ ↾ (𝐻 × 𝐻)), ( ·ℎ ↾ (ℂ × 𝐻))〉, (normℎ ↾ 𝐻)〉 | |
16 | 2, 15, 4, 1 | hhshsslem1 28455 | . . . . 5 ⊢ 𝐻 = (BaseSet‘𝑊) |
17 | 14, 16 | eleqtrri 2839 | . . . 4 ⊢ (0vec‘𝑊) ∈ 𝐻 |
18 | 9, 17 | eqeltrri 2837 | . . 3 ⊢ 0ℎ ∈ 𝐻 |
19 | 1, 18 | pm3.2i 470 | . 2 ⊢ (𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) |
20 | 2 | hhva 28354 | . . . . . . 7 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
21 | eqid 2761 | . . . . . . 7 ⊢ ( +𝑣 ‘𝑊) = ( +𝑣 ‘𝑊) | |
22 | 16, 20, 21, 7 | sspgval 27915 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻)) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
23 | 3, 4, 22 | mpanl12 720 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) = (𝑥 +ℎ 𝑦)) |
24 | 16, 21 | nvgcl 27806 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
25 | 11, 24 | mp3an1 1560 | . . . . 5 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥( +𝑣 ‘𝑊)𝑦) ∈ 𝐻) |
26 | 23, 25 | eqeltrrd 2841 | . . . 4 ⊢ ((𝑥 ∈ 𝐻 ∧ 𝑦 ∈ 𝐻) → (𝑥 +ℎ 𝑦) ∈ 𝐻) |
27 | 26 | rgen2a 3116 | . . 3 ⊢ ∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 |
28 | 2 | hhsm 28357 | . . . . . . 7 ⊢ ·ℎ = ( ·𝑠OLD ‘𝑈) |
29 | eqid 2761 | . . . . . . 7 ⊢ ( ·𝑠OLD ‘𝑊) = ( ·𝑠OLD ‘𝑊) | |
30 | 16, 28, 29, 7 | sspsval 27917 | . . . . . 6 ⊢ (((𝑈 ∈ NrmCVec ∧ 𝑊 ∈ (SubSp‘𝑈)) ∧ (𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻)) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
31 | 3, 4, 30 | mpanl12 720 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) = (𝑥 ·ℎ 𝑦)) |
32 | 16, 29 | nvscl 27812 | . . . . . 6 ⊢ ((𝑊 ∈ NrmCVec ∧ 𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
33 | 11, 32 | mp3an1 1560 | . . . . 5 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥( ·𝑠OLD ‘𝑊)𝑦) ∈ 𝐻) |
34 | 31, 33 | eqeltrrd 2841 | . . . 4 ⊢ ((𝑥 ∈ ℂ ∧ 𝑦 ∈ 𝐻) → (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
35 | 34 | rgen2 3114 | . . 3 ⊢ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻 |
36 | 27, 35 | pm3.2i 470 | . 2 ⊢ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻) |
37 | issh2 28397 | . 2 ⊢ (𝐻 ∈ Sℋ ↔ ((𝐻 ⊆ ℋ ∧ 0ℎ ∈ 𝐻) ∧ (∀𝑥 ∈ 𝐻 ∀𝑦 ∈ 𝐻 (𝑥 +ℎ 𝑦) ∈ 𝐻 ∧ ∀𝑥 ∈ ℂ ∀𝑦 ∈ 𝐻 (𝑥 ·ℎ 𝑦) ∈ 𝐻))) | |
38 | 19, 36, 37 | mpbir2an 993 | 1 ⊢ 𝐻 ∈ Sℋ |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ⊆ wss 3716 〈cop 4328 × cxp 5265 ↾ cres 5269 ‘cfv 6050 (class class class)co 6815 ℂcc 10147 NrmCVeccnv 27770 +𝑣 cpv 27771 BaseSetcba 27772 ·𝑠OLD cns 27773 0veccn0v 27774 SubSpcss 27907 ℋchil 28107 +ℎ cva 28108 ·ℎ csm 28109 normℎcno 28111 0ℎc0v 28112 Sℋ csh 28116 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-pre-sup 10227 ax-hilex 28187 ax-hfvadd 28188 ax-hvcom 28189 ax-hvass 28190 ax-hv0cl 28191 ax-hvaddid 28192 ax-hfvmul 28193 ax-hvmulid 28194 ax-hvmulass 28195 ax-hvdistr1 28196 ax-hvdistr2 28197 ax-hvmul0 28198 ax-hfi 28267 ax-his1 28270 ax-his2 28271 ax-his3 28272 ax-his4 28273 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-sup 8516 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-div 10898 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-n0 11506 df-z 11591 df-uz 11901 df-rp 12047 df-seq 13017 df-exp 13076 df-cj 14059 df-re 14060 df-im 14061 df-sqrt 14195 df-abs 14196 df-grpo 27678 df-gid 27679 df-ginv 27680 df-gdiv 27681 df-ablo 27730 df-vc 27745 df-nv 27778 df-va 27781 df-ba 27782 df-sm 27783 df-0v 27784 df-vs 27785 df-nmcv 27786 df-ssp 27908 df-hnorm 28156 df-hvsub 28159 df-sh 28395 |
This theorem is referenced by: hhsssh 28457 |
Copyright terms: Public domain | W3C validator |