![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhnv | Structured version Visualization version GIF version |
Description: Hilbert space is a normed complex vector space. (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhnv | ⊢ 𝑈 ∈ NrmCVec |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 28351 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 27735 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 28191 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6192 | . . 3 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 27709 | . 2 ⊢ ℋ = ran +ℎ |
7 | hilid 28352 | . . 3 ⊢ (GId‘ +ℎ ) = 0ℎ | |
8 | 7 | eqcomi 2779 | . 2 ⊢ 0ℎ = (GId‘ +ℎ ) |
9 | hilvc 28353 | . 2 ⊢ 〈 +ℎ , ·ℎ 〉 ∈ CVecOLD | |
10 | normf 28314 | . 2 ⊢ normℎ: ℋ⟶ℝ | |
11 | norm-i 28320 | . . 3 ⊢ (𝑥 ∈ ℋ → ((normℎ‘𝑥) = 0 ↔ 𝑥 = 0ℎ)) | |
12 | 11 | biimpa 462 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ (normℎ‘𝑥) = 0) → 𝑥 = 0ℎ) |
13 | norm-iii 28331 | . 2 ⊢ ((𝑦 ∈ ℂ ∧ 𝑥 ∈ ℋ) → (normℎ‘(𝑦 ·ℎ 𝑥)) = ((abs‘𝑦) · (normℎ‘𝑥))) | |
14 | norm-ii 28329 | . 2 ⊢ ((𝑥 ∈ ℋ ∧ 𝑦 ∈ ℋ) → (normℎ‘(𝑥 +ℎ 𝑦)) ≤ ((normℎ‘𝑥) + (normℎ‘𝑦))) | |
15 | hhnv.1 | . 2 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
16 | 6, 8, 9, 10, 12, 13, 14, 15 | isnvi 27802 | 1 ⊢ 𝑈 ∈ NrmCVec |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1630 ∈ wcel 2144 〈cop 4320 × cxp 5247 ‘cfv 6031 0cc0 10137 GrpOpcgr 27677 GIdcgi 27678 AbelOpcablo 27732 NrmCVeccnv 27773 ℋchil 28110 +ℎ cva 28111 ·ℎ csm 28112 normℎcno 28114 0ℎc0v 28115 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 ax-pre-sup 10215 ax-hilex 28190 ax-hfvadd 28191 ax-hvcom 28192 ax-hvass 28193 ax-hv0cl 28194 ax-hvaddid 28195 ax-hfvmul 28196 ax-hvmulid 28197 ax-hvmulass 28198 ax-hvdistr1 28199 ax-hvdistr2 28200 ax-hvmul0 28201 ax-hfi 28270 ax-his1 28273 ax-his2 28274 ax-his3 28275 ax-his4 28276 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-er 7895 df-en 8109 df-dom 8110 df-sdom 8111 df-sup 8503 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-div 10886 df-nn 11222 df-2 11280 df-3 11281 df-4 11282 df-n0 11494 df-z 11579 df-uz 11888 df-rp 12035 df-seq 13008 df-exp 13067 df-cj 14046 df-re 14047 df-im 14048 df-sqrt 14182 df-abs 14183 df-grpo 27681 df-gid 27682 df-ablo 27733 df-vc 27748 df-nv 27781 df-hnorm 28159 df-hvsub 28162 |
This theorem is referenced by: hhva 28357 hh0v 28359 hhsm 28360 hhvs 28361 hhnm 28362 hhims 28363 hhmet 28365 hhmetdval 28367 hhip 28368 hhph 28369 hlimadd 28384 hhcau 28389 hhlm 28390 hhhl 28395 hhssabloilem 28452 hhsst 28457 hhshsslem1 28458 hhshsslem2 28459 hhsssh 28460 hhsssh2 28461 hhssvs 28463 occllem 28496 nmopsetretHIL 29057 hhlnoi 29093 hhnmoi 29094 hhbloi 29095 hh0oi 29096 nmopub2tHIL 29103 nmlnop0iHIL 29189 hmopidmchi 29344 |
Copyright terms: Public domain | W3C validator |