![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhcms | Structured version Visualization version GIF version |
Description: The Hilbert space induced metric determines a complete metric space. (Contributed by NM, 10-Apr-2008.) (Proof shortened by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhcms.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhcms.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
Ref | Expression |
---|---|
hhcms | ⊢ 𝐷 ∈ (CMet‘ ℋ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2756 | . 2 ⊢ (MetOpen‘𝐷) = (MetOpen‘𝐷) | |
2 | hhcms.1 | . . 3 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
3 | hhcms.2 | . . 3 ⊢ 𝐷 = (IndMet‘𝑈) | |
4 | 2, 3 | hhmet 28336 | . 2 ⊢ 𝐷 ∈ (Met‘ ℋ) |
5 | 2, 3 | hhcau 28360 | . . . . . 6 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) |
6 | 5 | eleq2i 2827 | . . . . 5 ⊢ (𝑓 ∈ Cauchy ↔ 𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ))) |
7 | elin 3935 | . . . . . 6 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ))) | |
8 | ax-hilex 28161 | . . . . . . . 8 ⊢ ℋ ∈ V | |
9 | nnex 11214 | . . . . . . . 8 ⊢ ℕ ∈ V | |
10 | 8, 9 | elmap 8048 | . . . . . . 7 ⊢ (𝑓 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝑓:ℕ⟶ ℋ) |
11 | 10 | anbi2i 732 | . . . . . 6 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
12 | 7, 11 | bitri 264 | . . . . 5 ⊢ (𝑓 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
13 | 6, 12 | bitri 264 | . . . 4 ⊢ (𝑓 ∈ Cauchy ↔ (𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ)) |
14 | ax-hcompl 28364 | . . . 4 ⊢ (𝑓 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) | |
15 | 13, 14 | sylbir 225 | . . 3 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → ∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥) |
16 | 2, 3, 1 | hhlm 28361 | . . . . . . 7 ⊢ ⇝𝑣 = ((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑𝑚 ℕ)) |
17 | 16 | breqi 4806 | . . . . . 6 ⊢ (𝑓 ⇝𝑣 𝑥 ↔ 𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑𝑚 ℕ))𝑥) |
18 | vex 3339 | . . . . . . 7 ⊢ 𝑥 ∈ V | |
19 | 18 | brres 5556 | . . . . . 6 ⊢ (𝑓((⇝𝑡‘(MetOpen‘𝐷)) ↾ ( ℋ ↑𝑚 ℕ))𝑥 ↔ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥 ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ))) |
20 | 17, 19 | bitri 264 | . . . . 5 ⊢ (𝑓 ⇝𝑣 𝑥 ↔ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥 ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ))) |
21 | vex 3339 | . . . . . . 7 ⊢ 𝑓 ∈ V | |
22 | 21, 18 | breldm 5480 | . . . . . 6 ⊢ (𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
23 | 22 | adantr 472 | . . . . 5 ⊢ ((𝑓(⇝𝑡‘(MetOpen‘𝐷))𝑥 ∧ 𝑓 ∈ ( ℋ ↑𝑚 ℕ)) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
24 | 20, 23 | sylbi 207 | . . . 4 ⊢ (𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
25 | 24 | rexlimivw 3163 | . . 3 ⊢ (∃𝑥 ∈ ℋ 𝑓 ⇝𝑣 𝑥 → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
26 | 15, 25 | syl 17 | . 2 ⊢ ((𝑓 ∈ (Cau‘𝐷) ∧ 𝑓:ℕ⟶ ℋ) → 𝑓 ∈ dom (⇝𝑡‘(MetOpen‘𝐷))) |
27 | 1, 4, 26 | iscmet3i 23306 | 1 ⊢ 𝐷 ∈ (CMet‘ ℋ) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1628 ∈ wcel 2135 ∃wrex 3047 ∩ cin 3710 〈cop 4323 class class class wbr 4800 dom cdm 5262 ↾ cres 5264 ⟶wf 6041 ‘cfv 6045 (class class class)co 6809 ↑𝑚 cmap 8019 ℕcn 11208 MetOpencmopn 19934 ⇝𝑡clm 21228 Caucca 23247 CMetcms 23248 IndMetcims 27751 ℋchil 28081 +ℎ cva 28082 ·ℎ csm 28083 normℎcno 28085 Cauchyccau 28088 ⇝𝑣 chli 28089 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-rep 4919 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-inf2 8707 ax-cc 9445 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 ax-pre-sup 10202 ax-addf 10203 ax-mulf 10204 ax-hilex 28161 ax-hfvadd 28162 ax-hvcom 28163 ax-hvass 28164 ax-hv0cl 28165 ax-hvaddid 28166 ax-hfvmul 28167 ax-hvmulid 28168 ax-hvmulass 28169 ax-hvdistr1 28170 ax-hvdistr2 28171 ax-hvmul0 28172 ax-hfi 28241 ax-his1 28244 ax-his2 28245 ax-his3 28246 ax-his4 28247 ax-hcompl 28364 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rmo 3054 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-iin 4671 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-se 5222 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-isom 6054 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-1st 7329 df-2nd 7330 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-1o 7725 df-oadd 7729 df-omul 7730 df-er 7907 df-map 8021 df-pm 8022 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-fi 8478 df-sup 8509 df-inf 8510 df-oi 8576 df-card 8951 df-acn 8954 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-div 10873 df-nn 11209 df-2 11267 df-3 11268 df-4 11269 df-n0 11481 df-z 11566 df-uz 11876 df-q 11978 df-rp 12022 df-xneg 12135 df-xadd 12136 df-xmul 12137 df-ico 12370 df-fz 12516 df-fl 12783 df-seq 12992 df-exp 13051 df-cj 14034 df-re 14035 df-im 14036 df-sqrt 14170 df-abs 14171 df-clim 14414 df-rlim 14415 df-rest 16281 df-topgen 16302 df-psmet 19936 df-xmet 19937 df-met 19938 df-bl 19939 df-mopn 19940 df-fbas 19941 df-fg 19942 df-top 20897 df-topon 20914 df-bases 20948 df-ntr 21022 df-nei 21100 df-lm 21231 df-fil 21847 df-fm 21939 df-flim 21940 df-flf 21941 df-cfil 23249 df-cau 23250 df-cmet 23251 df-grpo 27652 df-gid 27653 df-ginv 27654 df-gdiv 27655 df-ablo 27704 df-vc 27719 df-nv 27752 df-va 27755 df-ba 27756 df-sm 27757 df-0v 27758 df-vs 27759 df-nmcv 27760 df-ims 27761 df-hnorm 28130 df-hvsub 28133 df-hlim 28134 df-hcau 28135 |
This theorem is referenced by: hhhl 28366 hilcms 28367 |
Copyright terms: Public domain | W3C validator |