![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhcmpl | Structured version Visualization version GIF version |
Description: Lemma used for derivation of the completeness axiom ax-hcompl 28339 from ZFC Hilbert space theory. (Contributed by NM, 9-Apr-2008.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhlm.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
hhlm.2 | ⊢ 𝐷 = (IndMet‘𝑈) |
hhlm.3 | ⊢ 𝐽 = (MetOpen‘𝐷) |
hhcmpl.c | ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) |
Ref | Expression |
---|---|
hhcmpl | ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hhcmpl.c | . . . 4 ⊢ (𝐹 ∈ (Cau‘𝐷) → ∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥) | |
2 | 1 | anim1i 593 | . . 3 ⊢ ((𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) → (∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) |
3 | elin 3927 | . . 3 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) ↔ (𝐹 ∈ (Cau‘𝐷) ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) | |
4 | r19.41v 3215 | . . 3 ⊢ (∃𝑥 ∈ ℋ (𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ)) ↔ (∃𝑥 ∈ ℋ 𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) | |
5 | 2, 3, 4 | 3imtr4i 281 | . 2 ⊢ (𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) → ∃𝑥 ∈ ℋ (𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) |
6 | hhlm.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
7 | hhlm.2 | . . . 4 ⊢ 𝐷 = (IndMet‘𝑈) | |
8 | 6, 7 | hhcau 28335 | . . 3 ⊢ Cauchy = ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ)) |
9 | 8 | eleq2i 2819 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ 𝐹 ∈ ((Cau‘𝐷) ∩ ( ℋ ↑𝑚 ℕ))) |
10 | hhlm.3 | . . . . . 6 ⊢ 𝐽 = (MetOpen‘𝐷) | |
11 | 6, 7, 10 | hhlm 28336 | . . . . 5 ⊢ ⇝𝑣 = ((⇝𝑡‘𝐽) ↾ ( ℋ ↑𝑚 ℕ)) |
12 | 11 | breqi 4798 | . . . 4 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ 𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑𝑚 ℕ))𝑥) |
13 | vex 3331 | . . . . 5 ⊢ 𝑥 ∈ V | |
14 | 13 | brres 5548 | . . . 4 ⊢ (𝐹((⇝𝑡‘𝐽) ↾ ( ℋ ↑𝑚 ℕ))𝑥 ↔ (𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) |
15 | 12, 14 | bitri 264 | . . 3 ⊢ (𝐹 ⇝𝑣 𝑥 ↔ (𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) |
16 | 15 | rexbii 3167 | . 2 ⊢ (∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥 ↔ ∃𝑥 ∈ ℋ (𝐹(⇝𝑡‘𝐽)𝑥 ∧ 𝐹 ∈ ( ℋ ↑𝑚 ℕ))) |
17 | 5, 9, 16 | 3imtr4i 281 | 1 ⊢ (𝐹 ∈ Cauchy → ∃𝑥 ∈ ℋ 𝐹 ⇝𝑣 𝑥) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1620 ∈ wcel 2127 ∃wrex 3039 ∩ cin 3702 〈cop 4315 class class class wbr 4792 ↾ cres 5256 ‘cfv 6037 (class class class)co 6801 ↑𝑚 cmap 8011 ℕcn 11183 MetOpencmopn 19909 ⇝𝑡clm 21203 Caucca 23222 IndMetcims 27726 ℋchil 28056 +ℎ cva 28057 ·ℎ csm 28058 normℎcno 28060 Cauchyccau 28063 ⇝𝑣 chli 28064 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1859 ax-4 1874 ax-5 1976 ax-6 2042 ax-7 2078 ax-8 2129 ax-9 2136 ax-10 2156 ax-11 2171 ax-12 2184 ax-13 2379 ax-ext 2728 ax-rep 4911 ax-sep 4921 ax-nul 4929 ax-pow 4980 ax-pr 5043 ax-un 7102 ax-cnex 10155 ax-resscn 10156 ax-1cn 10157 ax-icn 10158 ax-addcl 10159 ax-addrcl 10160 ax-mulcl 10161 ax-mulrcl 10162 ax-mulcom 10163 ax-addass 10164 ax-mulass 10165 ax-distr 10166 ax-i2m1 10167 ax-1ne0 10168 ax-1rid 10169 ax-rnegex 10170 ax-rrecex 10171 ax-cnre 10172 ax-pre-lttri 10173 ax-pre-lttrn 10174 ax-pre-ltadd 10175 ax-pre-mulgt0 10176 ax-pre-sup 10177 ax-addf 10178 ax-mulf 10179 ax-hilex 28136 ax-hfvadd 28137 ax-hvcom 28138 ax-hvass 28139 ax-hv0cl 28140 ax-hvaddid 28141 ax-hfvmul 28142 ax-hvmulid 28143 ax-hvmulass 28144 ax-hvdistr1 28145 ax-hvdistr2 28146 ax-hvmul0 28147 ax-hfi 28216 ax-his1 28219 ax-his2 28220 ax-his3 28221 ax-his4 28222 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1623 df-ex 1842 df-nf 1847 df-sb 2035 df-eu 2599 df-mo 2600 df-clab 2735 df-cleq 2741 df-clel 2744 df-nfc 2879 df-ne 2921 df-nel 3024 df-ral 3043 df-rex 3044 df-reu 3045 df-rmo 3046 df-rab 3047 df-v 3330 df-sbc 3565 df-csb 3663 df-dif 3706 df-un 3708 df-in 3710 df-ss 3717 df-pss 3719 df-nul 4047 df-if 4219 df-pw 4292 df-sn 4310 df-pr 4312 df-tp 4314 df-op 4316 df-uni 4577 df-iun 4662 df-br 4793 df-opab 4853 df-mpt 4870 df-tr 4893 df-id 5162 df-eprel 5167 df-po 5175 df-so 5176 df-fr 5213 df-we 5215 df-xp 5260 df-rel 5261 df-cnv 5262 df-co 5263 df-dm 5264 df-rn 5265 df-res 5266 df-ima 5267 df-pred 5829 df-ord 5875 df-on 5876 df-lim 5877 df-suc 5878 df-iota 6000 df-fun 6039 df-fn 6040 df-f 6041 df-f1 6042 df-fo 6043 df-f1o 6044 df-fv 6045 df-riota 6762 df-ov 6804 df-oprab 6805 df-mpt2 6806 df-om 7219 df-1st 7321 df-2nd 7322 df-wrecs 7564 df-recs 7625 df-rdg 7663 df-er 7899 df-map 8013 df-pm 8014 df-en 8110 df-dom 8111 df-sdom 8112 df-sup 8501 df-inf 8502 df-pnf 10239 df-mnf 10240 df-xr 10241 df-ltxr 10242 df-le 10243 df-sub 10431 df-neg 10432 df-div 10848 df-nn 11184 df-2 11242 df-3 11243 df-4 11244 df-n0 11456 df-z 11541 df-uz 11851 df-q 11953 df-rp 11997 df-xneg 12110 df-xadd 12111 df-xmul 12112 df-seq 12967 df-exp 13026 df-cj 14009 df-re 14010 df-im 14011 df-sqrt 14145 df-abs 14146 df-topgen 16277 df-psmet 19911 df-xmet 19912 df-met 19913 df-bl 19914 df-mopn 19915 df-top 20872 df-topon 20889 df-bases 20923 df-lm 21206 df-cau 23225 df-grpo 27627 df-gid 27628 df-ginv 27629 df-gdiv 27630 df-ablo 27679 df-vc 27694 df-nv 27727 df-va 27730 df-ba 27731 df-sm 27732 df-0v 27733 df-vs 27734 df-nmcv 27735 df-ims 27736 df-hnorm 28105 df-hvsub 28108 df-hlim 28109 df-hcau 28110 |
This theorem is referenced by: hilcompl 28338 |
Copyright terms: Public domain | W3C validator |