![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hhba | Structured version Visualization version GIF version |
Description: The base set of Hilbert space. This theorem provides an independent proof of df-hba 28166 (see comments in that definition). (Contributed by NM, 17-Nov-2007.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hhnv.1 | ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 |
Ref | Expression |
---|---|
hhba | ⊢ ℋ = (BaseSet‘𝑈) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hilablo 28357 | . . . 4 ⊢ +ℎ ∈ AbelOp | |
2 | ablogrpo 27741 | . . . 4 ⊢ ( +ℎ ∈ AbelOp → +ℎ ∈ GrpOp) | |
3 | 1, 2 | ax-mp 5 | . . 3 ⊢ +ℎ ∈ GrpOp |
4 | ax-hfvadd 28197 | . . . 4 ⊢ +ℎ :( ℋ × ℋ)⟶ ℋ | |
5 | 4 | fdmi 6194 | . . 3 ⊢ dom +ℎ = ( ℋ × ℋ) |
6 | 3, 5 | grporn 27715 | . 2 ⊢ ℋ = ran +ℎ |
7 | eqid 2771 | . . 3 ⊢ (BaseSet‘𝑈) = (BaseSet‘𝑈) | |
8 | hhnv.1 | . . . 4 ⊢ 𝑈 = 〈〈 +ℎ , ·ℎ 〉, normℎ〉 | |
9 | 8 | hhva 28363 | . . 3 ⊢ +ℎ = ( +𝑣 ‘𝑈) |
10 | 7, 9 | bafval 27799 | . 2 ⊢ (BaseSet‘𝑈) = ran +ℎ |
11 | 6, 10 | eqtr4i 2796 | 1 ⊢ ℋ = (BaseSet‘𝑈) |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1631 ∈ wcel 2145 〈cop 4323 × cxp 5248 ran crn 5251 ‘cfv 6030 GrpOpcgr 27683 AbelOpcablo 27738 BaseSetcba 27781 ℋchil 28116 +ℎ cva 28117 ·ℎ csm 28118 normℎcno 28120 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-pre-sup 10220 ax-hilex 28196 ax-hfvadd 28197 ax-hvcom 28198 ax-hvass 28199 ax-hv0cl 28200 ax-hvaddid 28201 ax-hfvmul 28202 ax-hvmulid 28203 ax-hvmulass 28204 ax-hvdistr1 28205 ax-hvdistr2 28206 ax-hvmul0 28207 ax-hfi 28276 ax-his1 28279 ax-his2 28280 ax-his3 28281 ax-his4 28282 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-iun 4657 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-er 7900 df-en 8114 df-dom 8115 df-sdom 8116 df-sup 8508 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-div 10891 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-n0 11500 df-z 11585 df-uz 11894 df-rp 12036 df-seq 13009 df-exp 13068 df-cj 14047 df-re 14048 df-im 14049 df-sqrt 14183 df-abs 14184 df-grpo 27687 df-gid 27688 df-ablo 27739 df-vc 27754 df-nv 27787 df-va 27790 df-ba 27791 df-hnorm 28165 df-hvsub 28168 |
This theorem is referenced by: hhvs 28367 hhmet 28371 hhmetdval 28373 hhip 28374 hhcau 28395 hhlm 28396 hhhl 28401 hhlnoi 29099 hhnmoi 29100 hh0oi 29102 |
Copyright terms: Public domain | W3C validator |