Step | Hyp | Ref
| Expression |
1 | | fzfid 12958 |
. . . . 5
⊢ (𝜑 → (1...𝑁) ∈ Fin) |
2 | | diffi 8349 |
. . . . 5
⊢
((1...𝑁) ∈ Fin
→ ((1...𝑁) ∖
ℙ) ∈ Fin) |
3 | 1, 2 | syl 17 |
. . . 4
⊢ (𝜑 → ((1...𝑁) ∖ ℙ) ∈
Fin) |
4 | | vmaf 25036 |
. . . . . 6
⊢
Λ:ℕ⟶ℝ |
5 | 4 | a1i 11 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) →
Λ:ℕ⟶ℝ) |
6 | | fz1ssnn 12557 |
. . . . . . . 8
⊢
(1...𝑁) ⊆
ℕ |
7 | 6 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (1...𝑁) ⊆ ℕ) |
8 | 7 | ssdifssd 3883 |
. . . . . 6
⊢ (𝜑 → ((1...𝑁) ∖ ℙ) ⊆
ℕ) |
9 | 8 | sselda 3736 |
. . . . 5
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) → 𝑖 ∈
ℕ) |
10 | 5, 9 | ffvelrnd 6515 |
. . . 4
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) →
(Λ‘𝑖) ∈
ℝ) |
11 | 3, 10 | fsumrecl 14656 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈
ℝ) |
12 | | 2rp 12022 |
. . . . 5
⊢ 2 ∈
ℝ+ |
13 | 12 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ∈
ℝ+) |
14 | 13 | relogcld 24560 |
. . 3
⊢ (𝜑 → (log‘2) ∈
ℝ) |
15 | | 1nn0 11492 |
. . . . . 6
⊢ 1 ∈
ℕ0 |
16 | | 4re 11281 |
. . . . . . . 8
⊢ 4 ∈
ℝ |
17 | | 2re 11274 |
. . . . . . . . . 10
⊢ 2 ∈
ℝ |
18 | | 6re 11285 |
. . . . . . . . . . . 12
⊢ 6 ∈
ℝ |
19 | 18, 17 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (6 ∈
ℝ ∧ 2 ∈ ℝ) |
20 | | dp2cl 29888 |
. . . . . . . . . . 11
⊢ ((6
∈ ℝ ∧ 2 ∈ ℝ) → _62 ∈ ℝ) |
21 | 19, 20 | ax-mp 5 |
. . . . . . . . . 10
⊢ _62 ∈ ℝ |
22 | 17, 21 | pm3.2i 470 |
. . . . . . . . 9
⊢ (2 ∈
ℝ ∧ _62 ∈
ℝ) |
23 | | dp2cl 29888 |
. . . . . . . . 9
⊢ ((2
∈ ℝ ∧ _62 ∈
ℝ) → _2_62 ∈ ℝ) |
24 | 22, 23 | ax-mp 5 |
. . . . . . . 8
⊢ _2_62 ∈ ℝ |
25 | 16, 24 | pm3.2i 470 |
. . . . . . 7
⊢ (4 ∈
ℝ ∧ _2_62 ∈ ℝ) |
26 | | dp2cl 29888 |
. . . . . . 7
⊢ ((4
∈ ℝ ∧ _2_62 ∈ ℝ) → _4_2_62
∈ ℝ) |
27 | 25, 26 | ax-mp 5 |
. . . . . 6
⊢ _4_2_62
∈ ℝ |
28 | | dpcl 29899 |
. . . . . 6
⊢ ((1
∈ ℕ0 ∧ _4_2_62
∈ ℝ) → (1._4_2_62) ∈ ℝ) |
29 | 15, 27, 28 | mp2an 710 |
. . . . 5
⊢ (1._4_2_62)
∈ ℝ |
30 | 29 | a1i 11 |
. . . 4
⊢ (𝜑 → (1._4_2_62)
∈ ℝ) |
31 | | hgt750lemc.n |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈ ℕ) |
32 | 31 | nnred 11219 |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ ℝ) |
33 | 31 | nnrpd 12055 |
. . . . . 6
⊢ (𝜑 → 𝑁 ∈
ℝ+) |
34 | 33 | rpge0d 12061 |
. . . . 5
⊢ (𝜑 → 0 ≤ 𝑁) |
35 | 32, 34 | resqrtcld 14347 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℝ) |
36 | 30, 35 | remulcld 10254 |
. . 3
⊢ (𝜑 → ((1._4_2_62)
· (√‘𝑁))
∈ ℝ) |
37 | | 0nn0 11491 |
. . . . . 6
⊢ 0 ∈
ℕ0 |
38 | | 0re 10224 |
. . . . . . . 8
⊢ 0 ∈
ℝ |
39 | | 1re 10223 |
. . . . . . . . . . . 12
⊢ 1 ∈
ℝ |
40 | 38, 39 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (0 ∈
ℝ ∧ 1 ∈ ℝ) |
41 | | dp2cl 29888 |
. . . . . . . . . . 11
⊢ ((0
∈ ℝ ∧ 1 ∈ ℝ) → _01 ∈ ℝ) |
42 | 40, 41 | ax-mp 5 |
. . . . . . . . . 10
⊢ _01 ∈ ℝ |
43 | 38, 42 | pm3.2i 470 |
. . . . . . . . 9
⊢ (0 ∈
ℝ ∧ _01 ∈
ℝ) |
44 | | dp2cl 29888 |
. . . . . . . . 9
⊢ ((0
∈ ℝ ∧ _01 ∈
ℝ) → _0_01 ∈ ℝ) |
45 | 43, 44 | ax-mp 5 |
. . . . . . . 8
⊢ _0_01 ∈ ℝ |
46 | 38, 45 | pm3.2i 470 |
. . . . . . 7
⊢ (0 ∈
ℝ ∧ _0_01 ∈ ℝ) |
47 | | dp2cl 29888 |
. . . . . . 7
⊢ ((0
∈ ℝ ∧ _0_01 ∈ ℝ) → _0_0_01
∈ ℝ) |
48 | 46, 47 | ax-mp 5 |
. . . . . 6
⊢ _0_0_01
∈ ℝ |
49 | | dpcl 29899 |
. . . . . 6
⊢ ((0
∈ ℕ0 ∧ _0_0_01
∈ ℝ) → (0._0_0_01) ∈ ℝ) |
50 | 37, 48, 49 | mp2an 710 |
. . . . 5
⊢ (0._0_0_01)
∈ ℝ |
51 | 50 | a1i 11 |
. . . 4
⊢ (𝜑 → (0._0_0_01)
∈ ℝ) |
52 | 51, 35 | remulcld 10254 |
. . 3
⊢ (𝜑 → ((0._0_0_01)
· (√‘𝑁))
∈ ℝ) |
53 | 31 | nnzd 11665 |
. . . . . . 7
⊢ (𝜑 → 𝑁 ∈ ℤ) |
54 | | chpvalz 31007 |
. . . . . . 7
⊢ (𝑁 ∈ ℤ →
(ψ‘𝑁) =
Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖)) |
55 | 53, 54 | syl 17 |
. . . . . 6
⊢ (𝜑 → (ψ‘𝑁) = Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖)) |
56 | | chtvalz 31008 |
. . . . . . . 8
⊢ (𝑁 ∈ ℤ →
(θ‘𝑁) =
Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖)) |
57 | 53, 56 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖)) |
58 | | inss2 3969 |
. . . . . . . . . . 11
⊢
((1...𝑁) ∩
ℙ) ⊆ ℙ |
59 | 58 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...𝑁) ∩ ℙ) ⊆
ℙ) |
60 | 59 | sselda 3736 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℙ) |
61 | | vmaprm 25034 |
. . . . . . . . 9
⊢ (𝑖 ∈ ℙ →
(Λ‘𝑖) =
(log‘𝑖)) |
62 | 60, 61 | syl 17 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
(Λ‘𝑖) =
(log‘𝑖)) |
63 | 62 | sumeq2dv 14624 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(log‘𝑖)) |
64 | 57, 63 | eqtr4d 2789 |
. . . . . 6
⊢ (𝜑 → (θ‘𝑁) = Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)) |
65 | 55, 64 | oveq12d 6823 |
. . . . 5
⊢ (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) = (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖))) |
66 | 10 | recnd 10252 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∖ ℙ)) →
(Λ‘𝑖) ∈
ℂ) |
67 | 3, 66 | fsumcl 14655 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) ∈
ℂ) |
68 | | infi 8341 |
. . . . . . . 8
⊢
((1...𝑁) ∈ Fin
→ ((1...𝑁) ∩
ℙ) ∈ Fin) |
69 | 1, 68 | syl 17 |
. . . . . . 7
⊢ (𝜑 → ((1...𝑁) ∩ ℙ) ∈
Fin) |
70 | 4 | a1i 11 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
Λ:ℕ⟶ℝ) |
71 | | inss1 3968 |
. . . . . . . . . . . 12
⊢
((1...𝑁) ∩
ℙ) ⊆ (1...𝑁) |
72 | 71, 6 | sstri 3745 |
. . . . . . . . . . 11
⊢
((1...𝑁) ∩
ℙ) ⊆ ℕ |
73 | 72 | a1i 11 |
. . . . . . . . . 10
⊢ (𝜑 → ((1...𝑁) ∩ ℙ) ⊆
ℕ) |
74 | 73 | sselda 3736 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) → 𝑖 ∈ ℕ) |
75 | 70, 74 | ffvelrnd 6515 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
(Λ‘𝑖) ∈
ℝ) |
76 | 75 | recnd 10252 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑖 ∈ ((1...𝑁) ∩ ℙ)) →
(Λ‘𝑖) ∈
ℂ) |
77 | 69, 76 | fsumcl 14655 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) ∈
ℂ) |
78 | | inindif 29652 |
. . . . . . . . 9
⊢
(((1...𝑁) ∩
ℙ) ∩ ((1...𝑁)
∖ ℙ)) = ∅ |
79 | 78 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (((1...𝑁) ∩ ℙ) ∩ ((1...𝑁) ∖ ℙ)) =
∅) |
80 | | inundif 4182 |
. . . . . . . . . 10
⊢
(((1...𝑁) ∩
ℙ) ∪ ((1...𝑁)
∖ ℙ)) = (1...𝑁) |
81 | 80 | eqcomi 2761 |
. . . . . . . . 9
⊢
(1...𝑁) =
(((1...𝑁) ∩ ℙ)
∪ ((1...𝑁) ∖
ℙ)) |
82 | 81 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (1...𝑁) = (((1...𝑁) ∩ ℙ) ∪ ((1...𝑁) ∖
ℙ))) |
83 | 4 | a1i 11 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) →
Λ:ℕ⟶ℝ) |
84 | 7 | sselda 3736 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) → 𝑖 ∈ ℕ) |
85 | 83, 84 | ffvelrnd 6515 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℝ) |
86 | 85 | recnd 10252 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑖 ∈ (1...𝑁)) → (Λ‘𝑖) ∈ ℂ) |
87 | 79, 82, 1, 86 | fsumsplit 14662 |
. . . . . . 7
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖) + Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖))) |
88 | 77, 67, 87 | comraddd 10434 |
. . . . . 6
⊢ (𝜑 → Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) = (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖))) |
89 | 67, 77, 88 | mvrraddd 10629 |
. . . . 5
⊢ (𝜑 → (Σ𝑖 ∈ (1...𝑁)(Λ‘𝑖) − Σ𝑖 ∈ ((1...𝑁) ∩ ℙ)(Λ‘𝑖)) = Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖)) |
90 | 65, 89 | eqtr2d 2787 |
. . . 4
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) = ((ψ‘𝑁) − (θ‘𝑁))) |
91 | | fveq2 6344 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (ψ‘𝑥) = (ψ‘𝑁)) |
92 | | fveq2 6344 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (θ‘𝑥) = (θ‘𝑁)) |
93 | 91, 92 | oveq12d 6823 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((ψ‘𝑥) − (θ‘𝑥)) = ((ψ‘𝑁) − (θ‘𝑁))) |
94 | | fveq2 6344 |
. . . . . . 7
⊢ (𝑥 = 𝑁 → (√‘𝑥) = (√‘𝑁)) |
95 | 94 | oveq2d 6821 |
. . . . . 6
⊢ (𝑥 = 𝑁 → ((1._4_2_62)
· (√‘𝑥))
= ((1._4_2_62)
· (√‘𝑁))) |
96 | 93, 95 | breq12d 4809 |
. . . . 5
⊢ (𝑥 = 𝑁 → (((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62)
· (√‘𝑥))
↔ ((ψ‘𝑁)
− (θ‘𝑁))
< ((1._4_2_62)
· (√‘𝑁)))) |
97 | | ax-ros336 31025 |
. . . . . 6
⊢
∀𝑥 ∈
ℝ+ ((ψ‘𝑥) − (θ‘𝑥)) < ((1._4_2_62)
· (√‘𝑥)) |
98 | 97 | a1i 11 |
. . . . 5
⊢ (𝜑 → ∀𝑥 ∈ ℝ+
((ψ‘𝑥) −
(θ‘𝑥)) <
((1._4_2_62)
· (√‘𝑥))) |
99 | 96, 98, 33 | rspcdva 3447 |
. . . 4
⊢ (𝜑 → ((ψ‘𝑁) − (θ‘𝑁)) < ((1._4_2_62)
· (√‘𝑁))) |
100 | 90, 99 | eqbrtrd 4818 |
. . 3
⊢ (𝜑 → Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) < ((1._4_2_62)
· (√‘𝑁))) |
101 | 39 | a1i 11 |
. . . 4
⊢ (𝜑 → 1 ∈
ℝ) |
102 | | log2le1 24868 |
. . . . 5
⊢
(log‘2) < 1 |
103 | 102 | a1i 11 |
. . . 4
⊢ (𝜑 → (log‘2) <
1) |
104 | | 10nn0 11700 |
. . . . . . . . 9
⊢ ;10 ∈
ℕ0 |
105 | | 7nn0 11498 |
. . . . . . . . 9
⊢ 7 ∈
ℕ0 |
106 | 104, 105 | nn0expcli 13072 |
. . . . . . . 8
⊢ (;10↑7) ∈
ℕ0 |
107 | 106 | nn0rei 11487 |
. . . . . . 7
⊢ (;10↑7) ∈
ℝ |
108 | 107 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (;10↑7) ∈ ℝ) |
109 | 51, 108 | remulcld 10254 |
. . . . 5
⊢ (𝜑 → ((0._0_0_01)
· (;10↑7)) ∈
ℝ) |
110 | 104 | nn0rei 11487 |
. . . . . . . . . . 11
⊢ ;10 ∈ ℝ |
111 | | 0z 11572 |
. . . . . . . . . . 11
⊢ 0 ∈
ℤ |
112 | | 3z 11594 |
. . . . . . . . . . 11
⊢ 3 ∈
ℤ |
113 | 110, 111,
112 | 3pm3.2i 1421 |
. . . . . . . . . 10
⊢ (;10 ∈ ℝ ∧ 0 ∈
ℤ ∧ 3 ∈ ℤ) |
114 | | 1lt10 11865 |
. . . . . . . . . . 11
⊢ 1 <
;10 |
115 | | 3pos 11298 |
. . . . . . . . . . 11
⊢ 0 <
3 |
116 | 114, 115 | pm3.2i 470 |
. . . . . . . . . 10
⊢ (1 <
;10 ∧ 0 <
3) |
117 | | ltexp2a 13098 |
. . . . . . . . . 10
⊢ (((;10 ∈ ℝ ∧ 0 ∈
ℤ ∧ 3 ∈ ℤ) ∧ (1 < ;10 ∧ 0 < 3)) → (;10↑0) < (;10↑3)) |
118 | 113, 116,
117 | mp2an 710 |
. . . . . . . . 9
⊢ (;10↑0) < (;10↑3) |
119 | 104 | numexp0 15974 |
. . . . . . . . . 10
⊢ (;10↑0) = 1 |
120 | 119 | eqcomi 2761 |
. . . . . . . . 9
⊢ 1 =
(;10↑0) |
121 | 110 | recni 10236 |
. . . . . . . . . . 11
⊢ ;10 ∈ ℂ |
122 | | 10pos 11699 |
. . . . . . . . . . . 12
⊢ 0 <
;10 |
123 | 38, 122 | gtneii 10333 |
. . . . . . . . . . 11
⊢ ;10 ≠ 0 |
124 | | 4z 11595 |
. . . . . . . . . . 11
⊢ 4 ∈
ℤ |
125 | | expm1 13096 |
. . . . . . . . . . 11
⊢ ((;10 ∈ ℂ ∧ ;10 ≠ 0 ∧ 4 ∈ ℤ)
→ (;10↑(4 − 1)) =
((;10↑4) / ;10)) |
126 | 121, 123,
124, 125 | mp3an 1565 |
. . . . . . . . . 10
⊢ (;10↑(4 − 1)) = ((;10↑4) / ;10) |
127 | | 4m1e3 11322 |
. . . . . . . . . . 11
⊢ (4
− 1) = 3 |
128 | 127 | oveq2i 6816 |
. . . . . . . . . 10
⊢ (;10↑(4 − 1)) = (;10↑3) |
129 | | 4nn0 11495 |
. . . . . . . . . . . . 13
⊢ 4 ∈
ℕ0 |
130 | 104, 129 | nn0expcli 13072 |
. . . . . . . . . . . 12
⊢ (;10↑4) ∈
ℕ0 |
131 | 130 | nn0cni 11488 |
. . . . . . . . . . 11
⊢ (;10↑4) ∈
ℂ |
132 | | divrec2 10886 |
. . . . . . . . . . 11
⊢ (((;10↑4) ∈ ℂ ∧ ;10 ∈ ℂ ∧ ;10 ≠ 0) → ((;10↑4) / ;10) = ((1 / ;10) · (;10↑4))) |
133 | 131, 121,
123, 132 | mp3an 1565 |
. . . . . . . . . 10
⊢ ((;10↑4) / ;10) = ((1 / ;10) · (;10↑4)) |
134 | 126, 128,
133 | 3eqtr3ri 2783 |
. . . . . . . . 9
⊢ ((1 /
;10) · (;10↑4)) = (;10↑3) |
135 | 118, 120,
134 | 3brtr4i 4826 |
. . . . . . . 8
⊢ 1 <
((1 / ;10) · (;10↑4)) |
136 | | 1rp 12021 |
. . . . . . . . . 10
⊢ 1 ∈
ℝ+ |
137 | 136 | dp0h 29911 |
. . . . . . . . 9
⊢ (0.1) =
(1 / ;10) |
138 | 137 | oveq1i 6815 |
. . . . . . . 8
⊢ ((0.1)
· (;10↑4)) = ((1 /
;10) · (;10↑4)) |
139 | 135, 138 | breqtrri 4823 |
. . . . . . 7
⊢ 1 <
((0.1) · (;10↑4)) |
140 | 139 | a1i 11 |
. . . . . 6
⊢ (𝜑 → 1 < ((0.1) ·
(;10↑4))) |
141 | | 4p1e5 11338 |
. . . . . . . 8
⊢ (4 + 1) =
5 |
142 | | 5nn0 11496 |
. . . . . . . . 9
⊢ 5 ∈
ℕ0 |
143 | 142 | nn0zi 11586 |
. . . . . . . 8
⊢ 5 ∈
ℤ |
144 | 37, 136, 141, 124, 143 | dpexpp1 29917 |
. . . . . . 7
⊢ ((0.1)
· (;10↑4)) = ((0._01) · (;10↑5)) |
145 | 37, 136 | rpdp2cl 29890 |
. . . . . . . 8
⊢ _01 ∈
ℝ+ |
146 | | 5p1e6 11339 |
. . . . . . . 8
⊢ (5 + 1) =
6 |
147 | | 6nn0 11497 |
. . . . . . . . 9
⊢ 6 ∈
ℕ0 |
148 | 147 | nn0zi 11586 |
. . . . . . . 8
⊢ 6 ∈
ℤ |
149 | 37, 145, 146, 143, 148 | dpexpp1 29917 |
. . . . . . 7
⊢ ((0._01) · (;10↑5)) = ((0._0_01)
· (;10↑6)) |
150 | 37, 145 | rpdp2cl 29890 |
. . . . . . . 8
⊢ _0_01 ∈ ℝ+ |
151 | | 6p1e7 11340 |
. . . . . . . 8
⊢ (6 + 1) =
7 |
152 | 105 | nn0zi 11586 |
. . . . . . . 8
⊢ 7 ∈
ℤ |
153 | 37, 150, 151, 148, 152 | dpexpp1 29917 |
. . . . . . 7
⊢ ((0._0_01) · (;10↑6)) = ((0._0_0_01)
· (;10↑7)) |
154 | 144, 149,
153 | 3eqtrri 2779 |
. . . . . 6
⊢ ((0._0_0_01)
· (;10↑7)) = ((0.1)
· (;10↑4)) |
155 | 140, 154 | syl6breqr 4838 |
. . . . 5
⊢ (𝜑 → 1 < ((0._0_0_01)
· (;10↑7))) |
156 | 37, 150 | rpdp2cl 29890 |
. . . . . . . 8
⊢ _0_0_01
∈ ℝ+ |
157 | 37, 156 | rpdpcl 29912 |
. . . . . . 7
⊢ (0._0_0_01)
∈ ℝ+ |
158 | 157 | a1i 11 |
. . . . . 6
⊢ (𝜑 → (0._0_0_01)
∈ ℝ+) |
159 | | 2nn0 11493 |
. . . . . . . . . . . 12
⊢ 2 ∈
ℕ0 |
160 | 159, 105 | deccl 11696 |
. . . . . . . . . . 11
⊢ ;27 ∈
ℕ0 |
161 | 104, 160 | nn0expcli 13072 |
. . . . . . . . . 10
⊢ (;10↑;27) ∈ ℕ0 |
162 | 161 | nn0rei 11487 |
. . . . . . . . 9
⊢ (;10↑;27) ∈ ℝ |
163 | 162 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (;10↑;27) ∈ ℝ) |
164 | 161 | nn0ge0i 11504 |
. . . . . . . . 9
⊢ 0 ≤
(;10↑;27) |
165 | 164 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ≤ (;10↑;27)) |
166 | 163, 165 | resqrtcld 14347 |
. . . . . . 7
⊢ (𝜑 → (√‘(;10↑;27)) ∈ ℝ) |
167 | | expmul 13091 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℂ ∧ 7 ∈
ℕ0 ∧ 2 ∈ ℕ0) → (;10↑(7 · 2)) = ((;10↑7)↑2)) |
168 | 121, 105,
159, 167 | mp3an 1565 |
. . . . . . . . . . . 12
⊢ (;10↑(7 · 2)) = ((;10↑7)↑2) |
169 | | 7t2e14 11832 |
. . . . . . . . . . . . 13
⊢ (7
· 2) = ;14 |
170 | 169 | oveq2i 6816 |
. . . . . . . . . . . 12
⊢ (;10↑(7 · 2)) = (;10↑;14) |
171 | 168, 170 | eqtr3i 2776 |
. . . . . . . . . . 11
⊢ ((;10↑7)↑2) = (;10↑;14) |
172 | 171 | fveq2i 6347 |
. . . . . . . . . 10
⊢
(√‘((;10↑7)↑2)) = (√‘(;10↑;14)) |
173 | | expgt0 13079 |
. . . . . . . . . . . . 13
⊢ ((;10 ∈ ℝ ∧ 7 ∈
ℤ ∧ 0 < ;10) → 0
< (;10↑7)) |
174 | 110, 152,
122, 173 | mp3an 1565 |
. . . . . . . . . . . 12
⊢ 0 <
(;10↑7) |
175 | 38, 107, 174 | ltleii 10344 |
. . . . . . . . . . 11
⊢ 0 ≤
(;10↑7) |
176 | | sqrtsq 14201 |
. . . . . . . . . . 11
⊢ (((;10↑7) ∈ ℝ ∧ 0 ≤
(;10↑7)) →
(√‘((;10↑7)↑2)) = (;10↑7)) |
177 | 107, 175,
176 | mp2an 710 |
. . . . . . . . . 10
⊢
(√‘((;10↑7)↑2)) = (;10↑7) |
178 | 172, 177 | eqtr3i 2776 |
. . . . . . . . 9
⊢
(√‘(;10↑;14)) = (;10↑7) |
179 | 15, 129 | deccl 11696 |
. . . . . . . . . . . . 13
⊢ ;14 ∈
ℕ0 |
180 | 179 | nn0zi 11586 |
. . . . . . . . . . . 12
⊢ ;14 ∈ ℤ |
181 | 160 | nn0zi 11586 |
. . . . . . . . . . . 12
⊢ ;27 ∈ ℤ |
182 | 110, 180,
181 | 3pm3.2i 1421 |
. . . . . . . . . . 11
⊢ (;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ ;27 ∈ ℤ) |
183 | | 4lt10 11862 |
. . . . . . . . . . . . 13
⊢ 4 <
;10 |
184 | | 1lt2 11378 |
. . . . . . . . . . . . 13
⊢ 1 <
2 |
185 | 15, 159, 129, 105, 183, 184 | decltc 11716 |
. . . . . . . . . . . 12
⊢ ;14 < ;27 |
186 | 114, 185 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ (1 <
;10 ∧ ;14 < ;27) |
187 | | ltexp2a 13098 |
. . . . . . . . . . 11
⊢ (((;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ ;27 ∈ ℤ) ∧ (1 < ;10 ∧ ;14 < ;27)) → (;10↑;14) < (;10↑;27)) |
188 | 182, 186,
187 | mp2an 710 |
. . . . . . . . . 10
⊢ (;10↑;14) < (;10↑;27) |
189 | 104, 179 | nn0expcli 13072 |
. . . . . . . . . . . . 13
⊢ (;10↑;14) ∈ ℕ0 |
190 | 189 | nn0rei 11487 |
. . . . . . . . . . . 12
⊢ (;10↑;14) ∈ ℝ |
191 | | expgt0 13079 |
. . . . . . . . . . . . . 14
⊢ ((;10 ∈ ℝ ∧ ;14 ∈ ℤ ∧ 0 < ;10) → 0 < (;10↑;14)) |
192 | 110, 180,
122, 191 | mp3an 1565 |
. . . . . . . . . . . . 13
⊢ 0 <
(;10↑;14) |
193 | 38, 190, 192 | ltleii 10344 |
. . . . . . . . . . . 12
⊢ 0 ≤
(;10↑;14) |
194 | 190, 193 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((;10↑;14) ∈ ℝ ∧ 0 ≤ (;10↑;14)) |
195 | 162, 164 | pm3.2i 470 |
. . . . . . . . . . 11
⊢ ((;10↑;27) ∈ ℝ ∧ 0 ≤ (;10↑;27)) |
196 | | sqrtlt 14193 |
. . . . . . . . . . 11
⊢ ((((;10↑;14) ∈ ℝ ∧ 0 ≤ (;10↑;14)) ∧ ((;10↑;27) ∈ ℝ ∧ 0 ≤ (;10↑;27))) → ((;10↑;14) < (;10↑;27) ↔ (√‘(;10↑;14)) < (√‘(;10↑;27)))) |
197 | 194, 195,
196 | mp2an 710 |
. . . . . . . . . 10
⊢ ((;10↑;14) < (;10↑;27) ↔ (√‘(;10↑;14)) < (√‘(;10↑;27))) |
198 | 188, 197 | mpbi 220 |
. . . . . . . . 9
⊢
(√‘(;10↑;14)) < (√‘(;10↑;27)) |
199 | 178, 198 | eqbrtrri 4819 |
. . . . . . . 8
⊢ (;10↑7) < (√‘(;10↑;27)) |
200 | 199 | a1i 11 |
. . . . . . 7
⊢ (𝜑 → (;10↑7) < (√‘(;10↑;27))) |
201 | | hgt750lemd.0 |
. . . . . . . 8
⊢ (𝜑 → (;10↑;27) ≤ 𝑁) |
202 | 163, 165,
32, 34 | sqrtled 14356 |
. . . . . . . 8
⊢ (𝜑 → ((;10↑;27) ≤ 𝑁 ↔ (√‘(;10↑;27)) ≤ (√‘𝑁))) |
203 | 201, 202 | mpbid 222 |
. . . . . . 7
⊢ (𝜑 → (√‘(;10↑;27)) ≤ (√‘𝑁)) |
204 | 108, 166,
35, 200, 203 | ltletrd 10381 |
. . . . . 6
⊢ (𝜑 → (;10↑7) < (√‘𝑁)) |
205 | 108, 35, 158, 204 | ltmul2dd 12113 |
. . . . 5
⊢ (𝜑 → ((0._0_0_01)
· (;10↑7)) <
((0._0_0_01)
· (√‘𝑁))) |
206 | 101, 109,
52, 155, 205 | lttrd 10382 |
. . . 4
⊢ (𝜑 → 1 < ((0._0_0_01)
· (√‘𝑁))) |
207 | 14, 101, 52, 103, 206 | lttrd 10382 |
. . 3
⊢ (𝜑 → (log‘2) <
((0._0_0_01)
· (√‘𝑁))) |
208 | 11, 14, 36, 52, 100, 207 | lt2addd 10834 |
. 2
⊢ (𝜑 → (Σ𝑖 ∈ ((1...𝑁) ∖ ℙ)(Λ‘𝑖) + (log‘2)) <
(((1._4_2_62)
· (√‘𝑁))
+ ((0._0_0_01)
· (√‘𝑁)))) |
209 | | nfv 1984 |
. . 3
⊢
Ⅎ𝑖𝜑 |
210 | | nfcv 2894 |
. . 3
⊢
Ⅎ𝑖(log‘2) |
211 | | 2prm 15599 |
. . . 4
⊢ 2 ∈
ℙ |
212 | 211 | a1i 11 |
. . 3
⊢ (𝜑 → 2 ∈
ℙ) |
213 | | elndif 3869 |
. . . 4
⊢ (2 ∈
ℙ → ¬ 2 ∈ ((1...𝑁) ∖ ℙ)) |
214 | 212, 213 | syl 17 |
. . 3
⊢ (𝜑 → ¬ 2 ∈ ((1...𝑁) ∖
ℙ)) |
215 | | fveq2 6344 |
. . . 4
⊢ (𝑖 = 2 →
(Λ‘𝑖) =
(Λ‘2)) |
216 | | vmaprm 25034 |
. . . . 5
⊢ (2 ∈
ℙ → (Λ‘2) = (log‘2)) |
217 | 211, 216 | ax-mp 5 |
. . . 4
⊢
(Λ‘2) = (log‘2) |
218 | 215, 217 | syl6eq 2802 |
. . 3
⊢ (𝑖 = 2 →
(Λ‘𝑖) =
(log‘2)) |
219 | | 2cnd 11277 |
. . . 4
⊢ (𝜑 → 2 ∈
ℂ) |
220 | | 2ne0 11297 |
. . . . 5
⊢ 2 ≠
0 |
221 | 220 | a1i 11 |
. . . 4
⊢ (𝜑 → 2 ≠ 0) |
222 | 219, 221 | logcld 24508 |
. . 3
⊢ (𝜑 → (log‘2) ∈
ℂ) |
223 | 209, 210,
3, 212, 214, 66, 218, 222 | fsumsplitsn 14665 |
. 2
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖) =
(Σ𝑖 ∈
((1...𝑁) ∖
ℙ)(Λ‘𝑖)
+ (log‘2))) |
224 | 147, 12 | rpdp2cl 29890 |
. . . . . 6
⊢ _62 ∈
ℝ+ |
225 | 159, 224 | rpdp2cl 29890 |
. . . . 5
⊢ _2_62 ∈ ℝ+ |
226 | | 3rp 12023 |
. . . . . . 7
⊢ 3 ∈
ℝ+ |
227 | 147, 226 | rpdp2cl 29890 |
. . . . . 6
⊢ _63 ∈
ℝ+ |
228 | 159, 227 | rpdp2cl 29890 |
. . . . 5
⊢ _2_63 ∈ ℝ+ |
229 | | 1p0e1 11317 |
. . . . 5
⊢ (1 + 0) =
1 |
230 | | 4cn 11282 |
. . . . . . 7
⊢ 4 ∈
ℂ |
231 | 230 | addid1i 10407 |
. . . . . 6
⊢ (4 + 0) =
4 |
232 | | 2cn 11275 |
. . . . . . . 8
⊢ 2 ∈
ℂ |
233 | 232 | addid1i 10407 |
. . . . . . 7
⊢ (2 + 0) =
2 |
234 | | 3nn0 11494 |
. . . . . . . 8
⊢ 3 ∈
ℕ0 |
235 | | eqid 2752 |
. . . . . . . . 9
⊢ ;62 = ;62 |
236 | | eqid 2752 |
. . . . . . . . 9
⊢ ;01 = ;01 |
237 | | 6cn 11286 |
. . . . . . . . . 10
⊢ 6 ∈
ℂ |
238 | 237 | addid1i 10407 |
. . . . . . . . 9
⊢ (6 + 0) =
6 |
239 | | 2p1e3 11335 |
. . . . . . . . 9
⊢ (2 + 1) =
3 |
240 | 147, 159,
37, 15, 235, 236, 238, 239 | decadd 11754 |
. . . . . . . 8
⊢ (;62 + ;01) = ;63 |
241 | 147, 159,
37, 15, 147, 234, 240 | dpadd 29920 |
. . . . . . 7
⊢ ((6.2) +
(0.1)) = (6.3) |
242 | 147, 12, 37, 136, 147, 226, 159, 37, 233, 241 | dpadd2 29919 |
. . . . . 6
⊢ ((2._62) + (0._01)) = (2._63) |
243 | 159, 224,
37, 145, 159, 227, 129, 37, 231, 242 | dpadd2 29919 |
. . . . 5
⊢ ((4._2_62) + (0._0_01))
= (4._2_63) |
244 | 129, 225,
37, 150, 129, 228, 15, 37, 229, 243 | dpadd2 29919 |
. . . 4
⊢ ((1._4_2_62) +
(0._0_0_01))
= (1._4_2_63) |
245 | 244 | oveq1i 6815 |
. . 3
⊢
(((1._4_2_62) +
(0._0_0_01))
· (√‘𝑁))
= ((1._4_2_63)
· (√‘𝑁)) |
246 | 30 | recnd 10252 |
. . . 4
⊢ (𝜑 → (1._4_2_62)
∈ ℂ) |
247 | 51 | recnd 10252 |
. . . 4
⊢ (𝜑 → (0._0_0_01)
∈ ℂ) |
248 | 35 | recnd 10252 |
. . . 4
⊢ (𝜑 → (√‘𝑁) ∈
ℂ) |
249 | 246, 247,
248 | adddird 10249 |
. . 3
⊢ (𝜑 → (((1._4_2_62) +
(0._0_0_01))
· (√‘𝑁))
= (((1._4_2_62)
· (√‘𝑁))
+ ((0._0_0_01)
· (√‘𝑁)))) |
250 | 245, 249 | syl5eqr 2800 |
. 2
⊢ (𝜑 → ((1._4_2_63)
· (√‘𝑁))
= (((1._4_2_62)
· (√‘𝑁))
+ ((0._0_0_01)
· (√‘𝑁)))) |
251 | 208, 223,
250 | 3brtr4d 4828 |
1
⊢ (𝜑 → Σ𝑖 ∈ (((1...𝑁) ∖ ℙ) ∪
{2})(Λ‘𝑖) <
((1._4_2_63)
· (√‘𝑁))) |