![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hgmaprnlem1N | Structured version Visualization version GIF version |
Description: Lemma for hgmaprnN 37687. (Contributed by NM, 7-Jun-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hgmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hgmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hgmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hgmaprnlem1.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hgmaprnlem1.b | ⊢ 𝐵 = (Base‘𝑅) |
hgmaprnlem1.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hgmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hgmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hgmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hgmaprnlem1.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hgmaprnlem1.a | ⊢ 𝐴 = (Base‘𝑃) |
hgmaprnlem1.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hgmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hgmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hgmaprnlem1.g | ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) |
hgmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hgmaprnlem1.z | ⊢ (𝜑 → 𝑧 ∈ 𝐴) |
hgmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) |
hgmaprnlem1.s2 | ⊢ (𝜑 → 𝑠 ∈ 𝑉) |
hgmaprnlem1.sz | ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) |
hgmaprnlem1.k2 | ⊢ (𝜑 → 𝑘 ∈ 𝐵) |
hgmaprnlem1.sk | ⊢ (𝜑 → 𝑠 = (𝑘 · 𝑡)) |
Ref | Expression |
---|---|
hgmaprnlem1N | ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hgmaprnlem1.sk | . . . . 5 ⊢ (𝜑 → 𝑠 = (𝑘 · 𝑡)) | |
2 | 1 | fveq2d 6348 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑠) = (𝑆‘(𝑘 · 𝑡))) |
3 | hgmaprnlem1.sz | . . . 4 ⊢ (𝜑 → (𝑆‘𝑠) = (𝑧 ∙ (𝑆‘𝑡))) | |
4 | hgmaprnlem1.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
5 | hgmaprnlem1.u | . . . . 5 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
6 | hgmaprnlem1.v | . . . . 5 ⊢ 𝑉 = (Base‘𝑈) | |
7 | hgmaprnlem1.t | . . . . 5 ⊢ · = ( ·𝑠 ‘𝑈) | |
8 | hgmaprnlem1.r | . . . . 5 ⊢ 𝑅 = (Scalar‘𝑈) | |
9 | hgmaprnlem1.b | . . . . 5 ⊢ 𝐵 = (Base‘𝑅) | |
10 | hgmaprnlem1.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
11 | hgmaprnlem1.e | . . . . 5 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
12 | hgmaprnlem1.s | . . . . 5 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
13 | hgmaprnlem1.g | . . . . 5 ⊢ 𝐺 = ((HGMap‘𝐾)‘𝑊) | |
14 | hgmaprnlem1.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
15 | hgmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3719 | . . . . 5 ⊢ (𝜑 → 𝑡 ∈ 𝑉) |
17 | hgmaprnlem1.k2 | . . . . 5 ⊢ (𝜑 → 𝑘 ∈ 𝐵) | |
18 | 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 17 | hgmapvs 37677 | . . . 4 ⊢ (𝜑 → (𝑆‘(𝑘 · 𝑡)) = ((𝐺‘𝑘) ∙ (𝑆‘𝑡))) |
19 | 2, 3, 18 | 3eqtr3d 2794 | . . 3 ⊢ (𝜑 → (𝑧 ∙ (𝑆‘𝑡)) = ((𝐺‘𝑘) ∙ (𝑆‘𝑡))) |
20 | hgmaprnlem1.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
21 | hgmaprnlem1.p | . . . 4 ⊢ 𝑃 = (Scalar‘𝐶) | |
22 | hgmaprnlem1.a | . . . 4 ⊢ 𝐴 = (Base‘𝑃) | |
23 | hgmaprnlem1.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
24 | 4, 10, 14 | lcdlvec 37374 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LVec) |
25 | hgmaprnlem1.z | . . . 4 ⊢ (𝜑 → 𝑧 ∈ 𝐴) | |
26 | 4, 5, 8, 9, 10, 21, 22, 13, 14, 17 | hgmapdcl 37676 | . . . 4 ⊢ (𝜑 → (𝐺‘𝑘) ∈ 𝐴) |
27 | 4, 5, 6, 10, 20, 12, 14, 16 | hdmapcl 37616 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑡) ∈ 𝐷) |
28 | eldifsni 4458 | . . . . . 6 ⊢ (𝑡 ∈ (𝑉 ∖ { 0 }) → 𝑡 ≠ 0 ) | |
29 | 15, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑡 ≠ 0 ) |
30 | hgmaprnlem1.o | . . . . . . 7 ⊢ 0 = (0g‘𝑈) | |
31 | 4, 5, 6, 30, 10, 23, 12, 14, 16 | hdmapeq0 37630 | . . . . . 6 ⊢ (𝜑 → ((𝑆‘𝑡) = 𝑄 ↔ 𝑡 = 0 )) |
32 | 31 | necon3bid 2968 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑡) ≠ 𝑄 ↔ 𝑡 ≠ 0 )) |
33 | 29, 32 | mpbird 247 | . . . 4 ⊢ (𝜑 → (𝑆‘𝑡) ≠ 𝑄) |
34 | 20, 11, 21, 22, 23, 24, 25, 26, 27, 33 | lvecvscan2 19306 | . . 3 ⊢ (𝜑 → ((𝑧 ∙ (𝑆‘𝑡)) = ((𝐺‘𝑘) ∙ (𝑆‘𝑡)) ↔ 𝑧 = (𝐺‘𝑘))) |
35 | 19, 34 | mpbid 222 | . 2 ⊢ (𝜑 → 𝑧 = (𝐺‘𝑘)) |
36 | 4, 5, 8, 9, 13, 14 | hgmapfnN 37674 | . . 3 ⊢ (𝜑 → 𝐺 Fn 𝐵) |
37 | fnfvelrn 6511 | . . 3 ⊢ ((𝐺 Fn 𝐵 ∧ 𝑘 ∈ 𝐵) → (𝐺‘𝑘) ∈ ran 𝐺) | |
38 | 36, 17, 37 | syl2anc 696 | . 2 ⊢ (𝜑 → (𝐺‘𝑘) ∈ ran 𝐺) |
39 | 35, 38 | eqeltrd 2831 | 1 ⊢ (𝜑 → 𝑧 ∈ ran 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ∖ cdif 3704 {csn 4313 ran crn 5259 Fn wfn 6036 ‘cfv 6041 (class class class)co 6805 Basecbs 16051 Scalarcsca 16138 ·𝑠 cvsca 16139 0gc0g 16294 HLchlt 35132 LHypclh 35765 DVecHcdvh 36861 LCDualclcd 37369 HDMapchdma 37576 HGMapchg 37669 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-rep 4915 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 ax-riotaBAD 34734 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-fal 1630 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rmo 3050 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-ot 4322 df-uni 4581 df-int 4620 df-iun 4666 df-iin 4667 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-of 7054 df-om 7223 df-1st 7325 df-2nd 7326 df-tpos 7513 df-undef 7560 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-oadd 7725 df-er 7903 df-map 8017 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-2 11263 df-3 11264 df-4 11265 df-5 11266 df-6 11267 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 df-struct 16053 df-ndx 16054 df-slot 16055 df-base 16057 df-sets 16058 df-ress 16059 df-plusg 16148 df-mulr 16149 df-sca 16151 df-vsca 16152 df-0g 16296 df-mre 16440 df-mrc 16441 df-acs 16443 df-preset 17121 df-poset 17139 df-plt 17151 df-lub 17167 df-glb 17168 df-join 17169 df-meet 17170 df-p0 17232 df-p1 17233 df-lat 17239 df-clat 17301 df-mgm 17435 df-sgrp 17477 df-mnd 17488 df-submnd 17529 df-grp 17618 df-minusg 17619 df-sbg 17620 df-subg 17784 df-cntz 17942 df-oppg 17968 df-lsm 18243 df-cmn 18387 df-abl 18388 df-mgp 18682 df-ur 18694 df-ring 18741 df-oppr 18815 df-dvdsr 18833 df-unit 18834 df-invr 18864 df-dvr 18875 df-drng 18943 df-lmod 19059 df-lss 19127 df-lsp 19166 df-lvec 19297 df-lsatoms 34758 df-lshyp 34759 df-lcv 34801 df-lfl 34840 df-lkr 34868 df-ldual 34906 df-oposet 34958 df-ol 34960 df-oml 34961 df-covers 35048 df-ats 35049 df-atl 35080 df-cvlat 35104 df-hlat 35133 df-llines 35279 df-lplanes 35280 df-lvols 35281 df-lines 35282 df-psubsp 35284 df-pmap 35285 df-padd 35577 df-lhyp 35769 df-laut 35770 df-ldil 35885 df-ltrn 35886 df-trl 35941 df-tgrp 36525 df-tendo 36537 df-edring 36539 df-dveca 36785 df-disoa 36812 df-dvech 36862 df-dib 36922 df-dic 36956 df-dih 37012 df-doch 37131 df-djh 37178 df-lcdual 37370 df-mapd 37408 df-hvmap 37540 df-hdmap1 37577 df-hdmap 37578 df-hgmap 37670 |
This theorem is referenced by: hgmaprnlem3N 37684 |
Copyright terms: Public domain | W3C validator |