Users' Mathboxes Mathbox for Scott Fenton < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hfuni Structured version   Visualization version   GIF version

Theorem hfuni 32618
Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.)
Assertion
Ref Expression
hfuni (𝐴 ∈ Hf → 𝐴 ∈ Hf )

Proof of Theorem hfuni
StepHypRef Expression
1 rankuni 8901 . . 3 (rank‘ 𝐴) = (rank‘𝐴)
2 rankon 8833 . . . . . 6 (rank‘𝐴) ∈ On
32ontrci 5994 . . . . 5 Tr (rank‘𝐴)
4 df-tr 4905 . . . . 5 (Tr (rank‘𝐴) ↔ (rank‘𝐴) ⊆ (rank‘𝐴))
53, 4mpbi 220 . . . 4 (rank‘𝐴) ⊆ (rank‘𝐴)
6 elhf2g 32610 . . . . 5 (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω))
76ibi 256 . . . 4 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
8 rankon 8833 . . . . . . 7 (rank‘ 𝐴) ∈ On
91, 8eqeltrri 2836 . . . . . 6 (rank‘𝐴) ∈ On
109onordi 5993 . . . . 5 Ord (rank‘𝐴)
11 ordom 7240 . . . . 5 Ord ω
12 ordtr2 5929 . . . . 5 ((Ord (rank‘𝐴) ∧ Ord ω) → (( (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → (rank‘𝐴) ∈ ω))
1310, 11, 12mp2an 710 . . . 4 (( (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → (rank‘𝐴) ∈ ω)
145, 7, 13sylancr 698 . . 3 (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω)
151, 14syl5eqel 2843 . 2 (𝐴 ∈ Hf → (rank‘ 𝐴) ∈ ω)
16 uniexg 7121 . . 3 (𝐴 ∈ Hf → 𝐴 ∈ V)
17 elhf2g 32610 . . 3 ( 𝐴 ∈ V → ( 𝐴 ∈ Hf ↔ (rank‘ 𝐴) ∈ ω))
1816, 17syl 17 . 2 (𝐴 ∈ Hf → ( 𝐴 ∈ Hf ↔ (rank‘ 𝐴) ∈ ω))
1915, 18mpbird 247 1 (𝐴 ∈ Hf → 𝐴 ∈ Hf )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  wcel 2139  Vcvv 3340  wss 3715   cuni 4588  Tr wtr 4904  Ord word 5883  Oncon0 5884  cfv 6049  ωcom 7231  rankcrnk 8801   Hf chf 32606
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-reg 8664  ax-inf2 8713
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-reu 3057  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-om 7232  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-r1 8802  df-rank 8803  df-hf 32607
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator