![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfuni | Structured version Visualization version GIF version |
Description: The union of an HF set is itself hereditarily finite. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfuni | ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankuni 8901 | . . 3 ⊢ (rank‘∪ 𝐴) = ∪ (rank‘𝐴) | |
2 | rankon 8833 | . . . . . 6 ⊢ (rank‘𝐴) ∈ On | |
3 | 2 | ontrci 5994 | . . . . 5 ⊢ Tr (rank‘𝐴) |
4 | df-tr 4905 | . . . . 5 ⊢ (Tr (rank‘𝐴) ↔ ∪ (rank‘𝐴) ⊆ (rank‘𝐴)) | |
5 | 3, 4 | mpbi 220 | . . . 4 ⊢ ∪ (rank‘𝐴) ⊆ (rank‘𝐴) |
6 | elhf2g 32610 | . . . . 5 ⊢ (𝐴 ∈ Hf → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
7 | 6 | ibi 256 | . . . 4 ⊢ (𝐴 ∈ Hf → (rank‘𝐴) ∈ ω) |
8 | rankon 8833 | . . . . . . 7 ⊢ (rank‘∪ 𝐴) ∈ On | |
9 | 1, 8 | eqeltrri 2836 | . . . . . 6 ⊢ ∪ (rank‘𝐴) ∈ On |
10 | 9 | onordi 5993 | . . . . 5 ⊢ Ord ∪ (rank‘𝐴) |
11 | ordom 7240 | . . . . 5 ⊢ Ord ω | |
12 | ordtr2 5929 | . . . . 5 ⊢ ((Ord ∪ (rank‘𝐴) ∧ Ord ω) → ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω)) | |
13 | 10, 11, 12 | mp2an 710 | . . . 4 ⊢ ((∪ (rank‘𝐴) ⊆ (rank‘𝐴) ∧ (rank‘𝐴) ∈ ω) → ∪ (rank‘𝐴) ∈ ω) |
14 | 5, 7, 13 | sylancr 698 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ (rank‘𝐴) ∈ ω) |
15 | 1, 14 | syl5eqel 2843 | . 2 ⊢ (𝐴 ∈ Hf → (rank‘∪ 𝐴) ∈ ω) |
16 | uniexg 7121 | . . 3 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ V) | |
17 | elhf2g 32610 | . . 3 ⊢ (∪ 𝐴 ∈ V → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) | |
18 | 16, 17 | syl 17 | . 2 ⊢ (𝐴 ∈ Hf → (∪ 𝐴 ∈ Hf ↔ (rank‘∪ 𝐴) ∈ ω)) |
19 | 15, 18 | mpbird 247 | 1 ⊢ (𝐴 ∈ Hf → ∪ 𝐴 ∈ Hf ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∈ wcel 2139 Vcvv 3340 ⊆ wss 3715 ∪ cuni 4588 Tr wtr 4904 Ord word 5883 Oncon0 5884 ‘cfv 6049 ωcom 7231 rankcrnk 8801 Hf chf 32606 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-reg 8664 ax-inf2 8713 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-ral 3055 df-rex 3056 df-reu 3057 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-om 7232 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-r1 8802 df-rank 8803 df-hf 32607 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |