![]() |
Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hfelhf | Structured version Visualization version GIF version |
Description: Any member of an HF set is itself an HF set. (Contributed by Scott Fenton, 16-Jul-2015.) |
Ref | Expression |
---|---|
hfelhf | ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝐴 ∈ Hf ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rankelg 32603 | . . 3 ⊢ ((𝐵 ∈ Hf ∧ 𝐴 ∈ 𝐵) → (rank‘𝐴) ∈ (rank‘𝐵)) | |
2 | 1 | ancoms 468 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → (rank‘𝐴) ∈ (rank‘𝐵)) |
3 | elhf2g 32611 | . . . 4 ⊢ (𝐵 ∈ Hf → (𝐵 ∈ Hf ↔ (rank‘𝐵) ∈ ω)) | |
4 | 3 | ibi 256 | . . 3 ⊢ (𝐵 ∈ Hf → (rank‘𝐵) ∈ ω) |
5 | elnn 7242 | . . . . . 6 ⊢ (((rank‘𝐴) ∈ (rank‘𝐵) ∧ (rank‘𝐵) ∈ ω) → (rank‘𝐴) ∈ ω) | |
6 | elhf2g 32611 | . . . . . 6 ⊢ (𝐴 ∈ 𝐵 → (𝐴 ∈ Hf ↔ (rank‘𝐴) ∈ ω)) | |
7 | 5, 6 | syl5ibr 236 | . . . . 5 ⊢ (𝐴 ∈ 𝐵 → (((rank‘𝐴) ∈ (rank‘𝐵) ∧ (rank‘𝐵) ∈ ω) → 𝐴 ∈ Hf )) |
8 | 7 | expcomd 453 | . . . 4 ⊢ (𝐴 ∈ 𝐵 → ((rank‘𝐵) ∈ ω → ((rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ Hf ))) |
9 | 8 | imp 444 | . . 3 ⊢ ((𝐴 ∈ 𝐵 ∧ (rank‘𝐵) ∈ ω) → ((rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ Hf )) |
10 | 4, 9 | sylan2 492 | . 2 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → ((rank‘𝐴) ∈ (rank‘𝐵) → 𝐴 ∈ Hf )) |
11 | 2, 10 | mpd 15 | 1 ⊢ ((𝐴 ∈ 𝐵 ∧ 𝐵 ∈ Hf ) → 𝐴 ∈ Hf ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 383 ∈ wcel 2140 ‘cfv 6050 ωcom 7232 rankcrnk 8802 Hf chf 32607 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-reg 8665 ax-inf2 8714 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-ral 3056 df-rex 3057 df-reu 3058 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-om 7233 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-r1 8803 df-rank 8804 df-hf 32608 |
This theorem is referenced by: hftr 32617 hfext 32618 |
Copyright terms: Public domain | W3C validator |