Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  heiborlem7 Structured version   Visualization version   GIF version

Theorem heiborlem7 33287
Description: Lemma for heibor 33291. Since the sizes of the balls decrease exponentially, the sequence converges to zero. (Contributed by Jeff Madsen, 23-Jan-2014.)
Hypotheses
Ref Expression
heibor.1 𝐽 = (MetOpen‘𝐷)
heibor.3 𝐾 = {𝑢 ∣ ¬ ∃𝑣 ∈ (𝒫 𝑈 ∩ Fin)𝑢 𝑣}
heibor.4 𝐺 = {⟨𝑦, 𝑛⟩ ∣ (𝑛 ∈ ℕ0𝑦 ∈ (𝐹𝑛) ∧ (𝑦𝐵𝑛) ∈ 𝐾)}
heibor.5 𝐵 = (𝑧𝑋, 𝑚 ∈ ℕ0 ↦ (𝑧(ball‘𝐷)(1 / (2↑𝑚))))
heibor.6 (𝜑𝐷 ∈ (CMet‘𝑋))
heibor.7 (𝜑𝐹:ℕ0⟶(𝒫 𝑋 ∩ Fin))
heibor.8 (𝜑 → ∀𝑛 ∈ ℕ0 𝑋 = 𝑦 ∈ (𝐹𝑛)(𝑦𝐵𝑛))
heibor.9 (𝜑 → ∀𝑥𝐺 ((𝑇𝑥)𝐺((2nd𝑥) + 1) ∧ ((𝐵𝑥) ∩ ((𝑇𝑥)𝐵((2nd𝑥) + 1))) ∈ 𝐾))
heibor.10 (𝜑𝐶𝐺0)
heibor.11 𝑆 = seq0(𝑇, (𝑚 ∈ ℕ0 ↦ if(𝑚 = 0, 𝐶, (𝑚 − 1))))
heibor.12 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
Assertion
Ref Expression
heiborlem7 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Distinct variable groups:   𝑥,𝑛,𝑦,𝑘,𝑟,𝑢,𝐹   𝑘,𝐺,𝑥   𝜑,𝑘,𝑟,𝑥   𝑘,𝑚,𝑣,𝑧,𝐷,𝑛,𝑟,𝑢,𝑥,𝑦   𝑘,𝑀,𝑚,𝑟,𝑢,𝑥,𝑦,𝑧   𝑇,𝑚,𝑛,𝑥,𝑦,𝑧   𝐵,𝑛,𝑢,𝑣,𝑦   𝑘,𝐽,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝑈,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑆,𝑘,𝑚,𝑛,𝑢,𝑣,𝑥,𝑦,𝑧   𝑘,𝑋,𝑚,𝑛,𝑟,𝑢,𝑣,𝑥,𝑦,𝑧   𝐶,𝑚,𝑛,𝑢,𝑣,𝑦   𝑛,𝐾,𝑥,𝑦,𝑧   𝑥,𝐵
Allowed substitution hints:   𝜑(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛)   𝐵(𝑧,𝑘,𝑚,𝑟)   𝐶(𝑥,𝑧,𝑘,𝑟)   𝑆(𝑟)   𝑇(𝑣,𝑢,𝑘,𝑟)   𝑈(𝑘,𝑚,𝑟)   𝐹(𝑧,𝑣,𝑚)   𝐺(𝑦,𝑧,𝑣,𝑢,𝑚,𝑛,𝑟)   𝐾(𝑣,𝑢,𝑘,𝑚,𝑟)   𝑀(𝑣,𝑛)

Proof of Theorem heiborlem7
StepHypRef Expression
1 3re 11054 . . . . . . 7 3 ∈ ℝ
2 3pos 11074 . . . . . . 7 0 < 3
31, 2elrpii 11795 . . . . . 6 3 ∈ ℝ+
4 rpdivcl 11816 . . . . . 6 ((𝑟 ∈ ℝ+ ∧ 3 ∈ ℝ+) → (𝑟 / 3) ∈ ℝ+)
53, 4mpan2 706 . . . . 5 (𝑟 ∈ ℝ+ → (𝑟 / 3) ∈ ℝ+)
6 2re 11050 . . . . . 6 2 ∈ ℝ
7 1lt2 11154 . . . . . 6 1 < 2
8 expnlbnd 12950 . . . . . 6 (((𝑟 / 3) ∈ ℝ+ ∧ 2 ∈ ℝ ∧ 1 < 2) → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
96, 7, 8mp3an23 1413 . . . . 5 ((𝑟 / 3) ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
105, 9syl 17 . . . 4 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3))
11 2nn 11145 . . . . . . . . . . 11 2 ∈ ℕ
12 nnnn0 11259 . . . . . . . . . . 11 (𝑘 ∈ ℕ → 𝑘 ∈ ℕ0)
13 nnexpcl 12829 . . . . . . . . . . 11 ((2 ∈ ℕ ∧ 𝑘 ∈ ℕ0) → (2↑𝑘) ∈ ℕ)
1411, 12, 13sylancr 694 . . . . . . . . . 10 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℕ)
1514nnrpd 11830 . . . . . . . . 9 (𝑘 ∈ ℕ → (2↑𝑘) ∈ ℝ+)
16 rpcn 11801 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ∈ ℂ)
17 rpne0 11808 . . . . . . . . . 10 ((2↑𝑘) ∈ ℝ+ → (2↑𝑘) ≠ 0)
18 3cn 11055 . . . . . . . . . . 11 3 ∈ ℂ
19 divrec 10661 . . . . . . . . . . 11 ((3 ∈ ℂ ∧ (2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2018, 19mp3an1 1408 . . . . . . . . . 10 (((2↑𝑘) ∈ ℂ ∧ (2↑𝑘) ≠ 0) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2116, 17, 20syl2anc 692 . . . . . . . . 9 ((2↑𝑘) ∈ ℝ+ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2215, 21syl 17 . . . . . . . 8 (𝑘 ∈ ℕ → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2322adantl 482 . . . . . . 7 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → (3 / (2↑𝑘)) = (3 · (1 / (2↑𝑘))))
2423breq1d 4633 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (3 · (1 / (2↑𝑘))) < 𝑟))
2514nnrecred 11026 . . . . . . 7 (𝑘 ∈ ℕ → (1 / (2↑𝑘)) ∈ ℝ)
26 rpre 11799 . . . . . . 7 (𝑟 ∈ ℝ+𝑟 ∈ ℝ)
271, 2pm3.2i 471 . . . . . . . 8 (3 ∈ ℝ ∧ 0 < 3)
28 ltmuldiv2 10857 . . . . . . . 8 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ (3 ∈ ℝ ∧ 0 < 3)) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
2927, 28mp3an3 1410 . . . . . . 7 (((1 / (2↑𝑘)) ∈ ℝ ∧ 𝑟 ∈ ℝ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3025, 26, 29syl2anr 495 . . . . . 6 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 · (1 / (2↑𝑘))) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3124, 30bitrd 268 . . . . 5 ((𝑟 ∈ ℝ+𝑘 ∈ ℕ) → ((3 / (2↑𝑘)) < 𝑟 ↔ (1 / (2↑𝑘)) < (𝑟 / 3)))
3231rexbidva 3044 . . . 4 (𝑟 ∈ ℝ+ → (∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (1 / (2↑𝑘)) < (𝑟 / 3)))
3310, 32mpbird 247 . . 3 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
34 fveq2 6158 . . . . . . . . 9 (𝑛 = 𝑘 → (𝑆𝑛) = (𝑆𝑘))
35 oveq2 6623 . . . . . . . . . 10 (𝑛 = 𝑘 → (2↑𝑛) = (2↑𝑘))
3635oveq2d 6631 . . . . . . . . 9 (𝑛 = 𝑘 → (3 / (2↑𝑛)) = (3 / (2↑𝑘)))
3734, 36opeq12d 4385 . . . . . . . 8 (𝑛 = 𝑘 → ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩ = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
38 heibor.12 . . . . . . . 8 𝑀 = (𝑛 ∈ ℕ ↦ ⟨(𝑆𝑛), (3 / (2↑𝑛))⟩)
39 opex 4903 . . . . . . . 8 ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩ ∈ V
4037, 38, 39fvmpt 6249 . . . . . . 7 (𝑘 ∈ ℕ → (𝑀𝑘) = ⟨(𝑆𝑘), (3 / (2↑𝑘))⟩)
4140fveq2d 6162 . . . . . 6 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩))
42 fvex 6168 . . . . . . 7 (𝑆𝑘) ∈ V
43 ovex 6643 . . . . . . 7 (3 / (2↑𝑘)) ∈ V
4442, 43op2nd 7137 . . . . . 6 (2nd ‘⟨(𝑆𝑘), (3 / (2↑𝑘))⟩) = (3 / (2↑𝑘))
4541, 44syl6eq 2671 . . . . 5 (𝑘 ∈ ℕ → (2nd ‘(𝑀𝑘)) = (3 / (2↑𝑘)))
4645breq1d 4633 . . . 4 (𝑘 ∈ ℕ → ((2nd ‘(𝑀𝑘)) < 𝑟 ↔ (3 / (2↑𝑘)) < 𝑟))
4746rexbiia 3035 . . 3 (∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟 ↔ ∃𝑘 ∈ ℕ (3 / (2↑𝑘)) < 𝑟)
4833, 47sylibr 224 . 2 (𝑟 ∈ ℝ+ → ∃𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟)
4948rgen 2918 1 𝑟 ∈ ℝ+𝑘 ∈ ℕ (2nd ‘(𝑀𝑘)) < 𝑟
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 384  w3a 1036   = wceq 1480  wcel 1987  {cab 2607  wne 2790  wral 2908  wrex 2909  cin 3559  wss 3560  ifcif 4064  𝒫 cpw 4136  cop 4161   cuni 4409   ciun 4492   class class class wbr 4623  {copab 4682  cmpt 4683  wf 5853  cfv 5857  (class class class)co 6615  cmpt2 6617  2nd c2nd 7127  Fincfn 7915  cc 9894  cr 9895  0cc0 9896  1c1 9897   + caddc 9899   · cmul 9901   < clt 10034  cmin 10226   / cdiv 10644  cn 10980  2c2 11030  3c3 11031  0cn0 11252  +crp 11792  seqcseq 12757  cexp 12816  ballcbl 19673  MetOpencmopn 19676  CMetcms 22992
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-8 1989  ax-9 1996  ax-10 2016  ax-11 2031  ax-12 2044  ax-13 2245  ax-ext 2601  ax-sep 4751  ax-nul 4759  ax-pow 4813  ax-pr 4877  ax-un 6914  ax-cnex 9952  ax-resscn 9953  ax-1cn 9954  ax-icn 9955  ax-addcl 9956  ax-addrcl 9957  ax-mulcl 9958  ax-mulrcl 9959  ax-mulcom 9960  ax-addass 9961  ax-mulass 9962  ax-distr 9963  ax-i2m1 9964  ax-1ne0 9965  ax-1rid 9966  ax-rnegex 9967  ax-rrecex 9968  ax-cnre 9969  ax-pre-lttri 9970  ax-pre-lttrn 9971  ax-pre-ltadd 9972  ax-pre-mulgt0 9973  ax-pre-sup 9974
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-3or 1037  df-3an 1038  df-tru 1483  df-ex 1702  df-nf 1707  df-sb 1878  df-eu 2473  df-mo 2474  df-clab 2608  df-cleq 2614  df-clel 2617  df-nfc 2750  df-ne 2791  df-nel 2894  df-ral 2913  df-rex 2914  df-reu 2915  df-rmo 2916  df-rab 2917  df-v 3192  df-sbc 3423  df-csb 3520  df-dif 3563  df-un 3565  df-in 3567  df-ss 3574  df-pss 3576  df-nul 3898  df-if 4065  df-pw 4138  df-sn 4156  df-pr 4158  df-tp 4160  df-op 4162  df-uni 4410  df-iun 4494  df-br 4624  df-opab 4684  df-mpt 4685  df-tr 4723  df-eprel 4995  df-id 4999  df-po 5005  df-so 5006  df-fr 5043  df-we 5045  df-xp 5090  df-rel 5091  df-cnv 5092  df-co 5093  df-dm 5094  df-rn 5095  df-res 5096  df-ima 5097  df-pred 5649  df-ord 5695  df-on 5696  df-lim 5697  df-suc 5698  df-iota 5820  df-fun 5859  df-fn 5860  df-f 5861  df-f1 5862  df-fo 5863  df-f1o 5864  df-fv 5865  df-riota 6576  df-ov 6618  df-oprab 6619  df-mpt2 6620  df-om 7028  df-2nd 7129  df-wrecs 7367  df-recs 7428  df-rdg 7466  df-er 7702  df-en 7916  df-dom 7917  df-sdom 7918  df-sup 8308  df-inf 8309  df-pnf 10036  df-mnf 10037  df-xr 10038  df-ltxr 10039  df-le 10040  df-sub 10228  df-neg 10229  df-div 10645  df-nn 10981  df-2 11039  df-3 11040  df-n0 11253  df-z 11338  df-uz 11648  df-rp 11793  df-fl 12549  df-seq 12758  df-exp 12817
This theorem is referenced by:  heiborlem8  33288  heiborlem9  33289
  Copyright terms: Public domain W3C validator