![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmaprnlem9N | Structured version Visualization version GIF version |
Description: Part of proof of part 12 in [Baer] p. 49 line 21, s=S(t). TODO: we seem to be going back and forth with mapd11 37347 and mapdcnv11N 37367. Use better hypotheses and/or theorems? (Contributed by NM, 27-May-2015.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hdmaprnlem1.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmaprnlem1.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmaprnlem1.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmaprnlem1.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmaprnlem1.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmaprnlem1.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmaprnlem1.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmaprnlem1.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmaprnlem1.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmaprnlem1.se | ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) |
hdmaprnlem1.ve | ⊢ (𝜑 → 𝑣 ∈ 𝑉) |
hdmaprnlem1.e | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) |
hdmaprnlem1.ue | ⊢ (𝜑 → 𝑢 ∈ 𝑉) |
hdmaprnlem1.un | ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) |
hdmaprnlem1.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmaprnlem1.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmaprnlem1.o | ⊢ 0 = (0g‘𝑈) |
hdmaprnlem1.a | ⊢ ✚ = (+g‘𝐶) |
hdmaprnlem1.t2 | ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) |
hdmaprnlem1.p | ⊢ + = (+g‘𝑈) |
hdmaprnlem1.pt | ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) |
Ref | Expression |
---|---|
hdmaprnlem9N | ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmaprnlem1.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmaprnlem1.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmaprnlem1.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmaprnlem1.n | . . . . . 6 ⊢ 𝑁 = (LSpan‘𝑈) | |
5 | hdmaprnlem1.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
6 | hdmaprnlem1.l | . . . . . 6 ⊢ 𝐿 = (LSpan‘𝐶) | |
7 | hdmaprnlem1.m | . . . . . 6 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
8 | hdmaprnlem1.s | . . . . . 6 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
9 | hdmaprnlem1.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
10 | hdmaprnlem1.se | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ (𝐷 ∖ {𝑄})) | |
11 | hdmaprnlem1.ve | . . . . . 6 ⊢ (𝜑 → 𝑣 ∈ 𝑉) | |
12 | hdmaprnlem1.e | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝐿‘{𝑠})) | |
13 | hdmaprnlem1.ue | . . . . . 6 ⊢ (𝜑 → 𝑢 ∈ 𝑉) | |
14 | hdmaprnlem1.un | . . . . . 6 ⊢ (𝜑 → ¬ 𝑢 ∈ (𝑁‘{𝑣})) | |
15 | hdmaprnlem1.d | . . . . . 6 ⊢ 𝐷 = (Base‘𝐶) | |
16 | hdmaprnlem1.q | . . . . . 6 ⊢ 𝑄 = (0g‘𝐶) | |
17 | hdmaprnlem1.o | . . . . . 6 ⊢ 0 = (0g‘𝑈) | |
18 | hdmaprnlem1.a | . . . . . 6 ⊢ ✚ = (+g‘𝐶) | |
19 | hdmaprnlem1.t2 | . . . . . 6 ⊢ (𝜑 → 𝑡 ∈ ((𝑁‘{𝑣}) ∖ { 0 })) | |
20 | hdmaprnlem1.p | . . . . . 6 ⊢ + = (+g‘𝑈) | |
21 | hdmaprnlem1.pt | . . . . . 6 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) = (𝑀‘(𝑁‘{(𝑢 + 𝑡)}))) | |
22 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | hdmaprnlem7N 37566 | . . . . 5 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
23 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21 | hdmaprnlem8N 37567 | . . . . . 6 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝑀‘(𝑁‘{𝑡}))) |
24 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmaprnlem4N 37564 | . . . . . 6 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑡})) = (𝐿‘{𝑠})) |
25 | 23, 24 | eleqtrd 2805 | . . . . 5 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ (𝐿‘{𝑠})) |
26 | 22, 25 | elind 3906 | . . . 4 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ ((𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∩ (𝐿‘{𝑠}))) |
27 | 1, 5, 9 | lcdlvec 37299 | . . . . 5 ⊢ (𝜑 → 𝐶 ∈ LVec) |
28 | 1, 5, 9 | lcdlmod 37300 | . . . . . 6 ⊢ (𝜑 → 𝐶 ∈ LMod) |
29 | 1, 2, 3, 5, 15, 8, 9, 13 | hdmapcl 37541 | . . . . . 6 ⊢ (𝜑 → (𝑆‘𝑢) ∈ 𝐷) |
30 | 10 | eldifad 3692 | . . . . . 6 ⊢ (𝜑 → 𝑠 ∈ 𝐷) |
31 | 15, 18 | lmodvacl 19000 | . . . . . 6 ⊢ ((𝐶 ∈ LMod ∧ (𝑆‘𝑢) ∈ 𝐷 ∧ 𝑠 ∈ 𝐷) → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
32 | 28, 29, 30, 31 | syl3anc 1439 | . . . . 5 ⊢ (𝜑 → ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) |
33 | eqid 2724 | . . . . . . . . . . . . . 14 ⊢ (LSubSp‘𝐶) = (LSubSp‘𝐶) | |
34 | 15, 33, 6 | lspsncl 19100 | . . . . . . . . . . . . 13 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷) → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
35 | 28, 30, 34 | syl2anc 696 | . . . . . . . . . . . 12 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ (LSubSp‘𝐶)) |
36 | 1, 7, 5, 33, 9 | mapdrn2 37359 | . . . . . . . . . . . 12 ⊢ (𝜑 → ran 𝑀 = (LSubSp‘𝐶)) |
37 | 35, 36 | eleqtrrd 2806 | . . . . . . . . . . 11 ⊢ (𝜑 → (𝐿‘{𝑠}) ∈ ran 𝑀) |
38 | 1, 7, 9, 37 | mapdcnvid2 37365 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑀‘(◡𝑀‘(𝐿‘{𝑠}))) = (𝐿‘{𝑠})) |
39 | 12, 38 | eqtr4d 2761 | . . . . . . . . 9 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{𝑠})))) |
40 | eqid 2724 | . . . . . . . . . 10 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
41 | 1, 2, 9 | dvhlmod 36818 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
42 | 3, 40, 4 | lspsncl 19100 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝑣 ∈ 𝑉) → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
43 | 41, 11, 42 | syl2anc 696 | . . . . . . . . . 10 ⊢ (𝜑 → (𝑁‘{𝑣}) ∈ (LSubSp‘𝑈)) |
44 | 1, 7, 2, 40, 9, 37 | mapdcnvcl 37360 | . . . . . . . . . 10 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{𝑠})) ∈ (LSubSp‘𝑈)) |
45 | 1, 2, 40, 7, 9, 43, 44 | mapd11 37347 | . . . . . . . . 9 ⊢ (𝜑 → ((𝑀‘(𝑁‘{𝑣})) = (𝑀‘(◡𝑀‘(𝐿‘{𝑠}))) ↔ (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{𝑠})))) |
46 | 39, 45 | mpbid 222 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑣}) = (◡𝑀‘(𝐿‘{𝑠}))) |
47 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 | hdmaprnlem3N 37561 | . . . . . . . 8 ⊢ (𝜑 → (𝑁‘{𝑣}) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
48 | 46, 47 | eqnetrrd 2964 | . . . . . . 7 ⊢ (𝜑 → (◡𝑀‘(𝐿‘{𝑠})) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
49 | 15, 33, 6 | lspsncl 19100 | . . . . . . . . . . 11 ⊢ ((𝐶 ∈ LMod ∧ ((𝑆‘𝑢) ✚ 𝑠) ∈ 𝐷) → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
50 | 28, 32, 49 | syl2anc 696 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ (LSubSp‘𝐶)) |
51 | 50, 36 | eleqtrrd 2806 | . . . . . . . . 9 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∈ ran 𝑀) |
52 | 1, 7, 9, 37, 51 | mapdcnv11N 37367 | . . . . . . . 8 ⊢ (𝜑 → ((◡𝑀‘(𝐿‘{𝑠})) = (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝐿‘{𝑠}) = (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
53 | 52 | necon3bid 2940 | . . . . . . 7 ⊢ (𝜑 → ((◡𝑀‘(𝐿‘{𝑠})) ≠ (◡𝑀‘(𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) ↔ (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}))) |
54 | 48, 53 | mpbid 222 | . . . . . 6 ⊢ (𝜑 → (𝐿‘{𝑠}) ≠ (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)})) |
55 | 54 | necomd 2951 | . . . . 5 ⊢ (𝜑 → (𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ≠ (𝐿‘{𝑠})) |
56 | 15, 16, 6, 27, 32, 30, 55 | lspdisj2 19250 | . . . 4 ⊢ (𝜑 → ((𝐿‘{((𝑆‘𝑢) ✚ 𝑠)}) ∩ (𝐿‘{𝑠})) = {𝑄}) |
57 | 26, 56 | eleqtrd 2805 | . . 3 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ {𝑄}) |
58 | elsni 4302 | . . 3 ⊢ ((𝑠(-g‘𝐶)(𝑆‘𝑡)) ∈ {𝑄} → (𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄) | |
59 | 57, 58 | syl 17 | . 2 ⊢ (𝜑 → (𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄) |
60 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 | hdmaprnlem4tN 37563 | . . . 4 ⊢ (𝜑 → 𝑡 ∈ 𝑉) |
61 | 1, 2, 3, 5, 15, 8, 9, 60 | hdmapcl 37541 | . . 3 ⊢ (𝜑 → (𝑆‘𝑡) ∈ 𝐷) |
62 | eqid 2724 | . . . 4 ⊢ (-g‘𝐶) = (-g‘𝐶) | |
63 | 15, 16, 62 | lmodsubeq0 19045 | . . 3 ⊢ ((𝐶 ∈ LMod ∧ 𝑠 ∈ 𝐷 ∧ (𝑆‘𝑡) ∈ 𝐷) → ((𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄 ↔ 𝑠 = (𝑆‘𝑡))) |
64 | 28, 30, 61, 63 | syl3anc 1439 | . 2 ⊢ (𝜑 → ((𝑠(-g‘𝐶)(𝑆‘𝑡)) = 𝑄 ↔ 𝑠 = (𝑆‘𝑡))) |
65 | 59, 64 | mpbid 222 | 1 ⊢ (𝜑 → 𝑠 = (𝑆‘𝑡)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1596 ∈ wcel 2103 ≠ wne 2896 ∖ cdif 3677 ∩ cin 3679 {csn 4285 ◡ccnv 5217 ran crn 5219 ‘cfv 6001 (class class class)co 6765 Basecbs 15980 +gcplusg 16064 0gc0g 16223 -gcsg 17546 LModclmod 18986 LSubSpclss 19055 LSpanclspn 19094 HLchlt 35057 LHypclh 35690 DVecHcdvh 36786 LCDualclcd 37294 mapdcmpd 37332 HDMapchdma 37501 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1835 ax-4 1850 ax-5 1952 ax-6 2018 ax-7 2054 ax-8 2105 ax-9 2112 ax-10 2132 ax-11 2147 ax-12 2160 ax-13 2355 ax-ext 2704 ax-rep 4879 ax-sep 4889 ax-nul 4897 ax-pow 4948 ax-pr 5011 ax-un 7066 ax-cnex 10105 ax-resscn 10106 ax-1cn 10107 ax-icn 10108 ax-addcl 10109 ax-addrcl 10110 ax-mulcl 10111 ax-mulrcl 10112 ax-mulcom 10113 ax-addass 10114 ax-mulass 10115 ax-distr 10116 ax-i2m1 10117 ax-1ne0 10118 ax-1rid 10119 ax-rnegex 10120 ax-rrecex 10121 ax-cnre 10122 ax-pre-lttri 10123 ax-pre-lttrn 10124 ax-pre-ltadd 10125 ax-pre-mulgt0 10126 ax-riotaBAD 34659 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1599 df-fal 1602 df-ex 1818 df-nf 1823 df-sb 2011 df-eu 2575 df-mo 2576 df-clab 2711 df-cleq 2717 df-clel 2720 df-nfc 2855 df-ne 2897 df-nel 3000 df-ral 3019 df-rex 3020 df-reu 3021 df-rmo 3022 df-rab 3023 df-v 3306 df-sbc 3542 df-csb 3640 df-dif 3683 df-un 3685 df-in 3687 df-ss 3694 df-pss 3696 df-nul 4024 df-if 4195 df-pw 4268 df-sn 4286 df-pr 4288 df-tp 4290 df-op 4292 df-ot 4294 df-uni 4545 df-int 4584 df-iun 4630 df-iin 4631 df-br 4761 df-opab 4821 df-mpt 4838 df-tr 4861 df-id 5128 df-eprel 5133 df-po 5139 df-so 5140 df-fr 5177 df-we 5179 df-xp 5224 df-rel 5225 df-cnv 5226 df-co 5227 df-dm 5228 df-rn 5229 df-res 5230 df-ima 5231 df-pred 5793 df-ord 5839 df-on 5840 df-lim 5841 df-suc 5842 df-iota 5964 df-fun 6003 df-fn 6004 df-f 6005 df-f1 6006 df-fo 6007 df-f1o 6008 df-fv 6009 df-riota 6726 df-ov 6768 df-oprab 6769 df-mpt2 6770 df-of 7014 df-om 7183 df-1st 7285 df-2nd 7286 df-tpos 7472 df-undef 7519 df-wrecs 7527 df-recs 7588 df-rdg 7626 df-1o 7680 df-oadd 7684 df-er 7862 df-map 7976 df-en 8073 df-dom 8074 df-sdom 8075 df-fin 8076 df-pnf 10189 df-mnf 10190 df-xr 10191 df-ltxr 10192 df-le 10193 df-sub 10381 df-neg 10382 df-nn 11134 df-2 11192 df-3 11193 df-4 11194 df-5 11195 df-6 11196 df-n0 11406 df-z 11491 df-uz 11801 df-fz 12441 df-struct 15982 df-ndx 15983 df-slot 15984 df-base 15986 df-sets 15987 df-ress 15988 df-plusg 16077 df-mulr 16078 df-sca 16080 df-vsca 16081 df-0g 16225 df-mre 16369 df-mrc 16370 df-acs 16372 df-preset 17050 df-poset 17068 df-plt 17080 df-lub 17096 df-glb 17097 df-join 17098 df-meet 17099 df-p0 17161 df-p1 17162 df-lat 17168 df-clat 17230 df-mgm 17364 df-sgrp 17406 df-mnd 17417 df-submnd 17458 df-grp 17547 df-minusg 17548 df-sbg 17549 df-subg 17713 df-cntz 17871 df-oppg 17897 df-lsm 18172 df-cmn 18316 df-abl 18317 df-mgp 18611 df-ur 18623 df-ring 18670 df-oppr 18744 df-dvdsr 18762 df-unit 18763 df-invr 18793 df-dvr 18804 df-drng 18872 df-lmod 18988 df-lss 19056 df-lsp 19095 df-lvec 19226 df-lsatoms 34683 df-lshyp 34684 df-lcv 34726 df-lfl 34765 df-lkr 34793 df-ldual 34831 df-oposet 34883 df-ol 34885 df-oml 34886 df-covers 34973 df-ats 34974 df-atl 35005 df-cvlat 35029 df-hlat 35058 df-llines 35204 df-lplanes 35205 df-lvols 35206 df-lines 35207 df-psubsp 35209 df-pmap 35210 df-padd 35502 df-lhyp 35694 df-laut 35695 df-ldil 35810 df-ltrn 35811 df-trl 35866 df-tgrp 36450 df-tendo 36462 df-edring 36464 df-dveca 36710 df-disoa 36737 df-dvech 36787 df-dib 36847 df-dic 36881 df-dih 36937 df-doch 37056 df-djh 37103 df-lcdual 37295 df-mapd 37333 df-hvmap 37465 df-hdmap1 37502 df-hdmap 37503 |
This theorem is referenced by: hdmaprnlem10N 37570 |
Copyright terms: Public domain | W3C validator |