Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmapinvlem4 Structured version   Visualization version   GIF version

Theorem hdmapinvlem4 37724
Description: Part 1.1 of Proposition 1 of [Baer] p. 110. We use 𝐶, 𝐷, 𝐼, and 𝐽 for Baer's u, v, s, and t. Our unit vector 𝐸 has the required properties for his w by hdmapevec2 37639. Our ((𝑆𝐷)‘𝐶) means his f(u,v) (note argument reversal). (Contributed by NM, 12-Jun-2015.)
Hypotheses
Ref Expression
hdmapinvlem3.h 𝐻 = (LHyp‘𝐾)
hdmapinvlem3.e 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
hdmapinvlem3.o 𝑂 = ((ocH‘𝐾)‘𝑊)
hdmapinvlem3.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmapinvlem3.v 𝑉 = (Base‘𝑈)
hdmapinvlem3.p + = (+g𝑈)
hdmapinvlem3.m = (-g𝑈)
hdmapinvlem3.q · = ( ·𝑠𝑈)
hdmapinvlem3.r 𝑅 = (Scalar‘𝑈)
hdmapinvlem3.b 𝐵 = (Base‘𝑅)
hdmapinvlem3.t × = (.r𝑅)
hdmapinvlem3.z 0 = (0g𝑅)
hdmapinvlem3.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmapinvlem3.g 𝐺 = ((HGMap‘𝐾)‘𝑊)
hdmapinvlem3.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmapinvlem3.c (𝜑𝐶 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.d (𝜑𝐷 ∈ (𝑂‘{𝐸}))
hdmapinvlem3.i (𝜑𝐼𝐵)
hdmapinvlem3.j (𝜑𝐽𝐵)
hdmapinvlem3.ij (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
Assertion
Ref Expression
hdmapinvlem4 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))

Proof of Theorem hdmapinvlem4
StepHypRef Expression
1 hdmapinvlem3.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmapinvlem3.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmapinvlem3.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmapinvlem3.m . . . 4 = (-g𝑈)
5 hdmapinvlem3.r . . . 4 𝑅 = (Scalar‘𝑈)
6 eqid 2770 . . . 4 (-g𝑅) = (-g𝑅)
7 hdmapinvlem3.s . . . 4 𝑆 = ((HDMap‘𝐾)‘𝑊)
8 hdmapinvlem3.k . . . 4 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
91, 2, 8dvhlmod 36913 . . . . 5 (𝜑𝑈 ∈ LMod)
10 hdmapinvlem3.j . . . . 5 (𝜑𝐽𝐵)
11 eqid 2770 . . . . . . 7 (Base‘𝐾) = (Base‘𝐾)
12 eqid 2770 . . . . . . 7 ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊)
13 eqid 2770 . . . . . . 7 (0g𝑈) = (0g𝑈)
14 hdmapinvlem3.e . . . . . . 7 𝐸 = ⟨( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))⟩
151, 11, 12, 2, 3, 13, 14, 8dvheveccl 36915 . . . . . 6 (𝜑𝐸 ∈ (𝑉 ∖ {(0g𝑈)}))
1615eldifad 3733 . . . . 5 (𝜑𝐸𝑉)
17 hdmapinvlem3.q . . . . . 6 · = ( ·𝑠𝑈)
18 hdmapinvlem3.b . . . . . 6 𝐵 = (Base‘𝑅)
193, 5, 17, 18lmodvscl 19089 . . . . 5 ((𝑈 ∈ LMod ∧ 𝐽𝐵𝐸𝑉) → (𝐽 · 𝐸) ∈ 𝑉)
209, 10, 16, 19syl3anc 1475 . . . 4 (𝜑 → (𝐽 · 𝐸) ∈ 𝑉)
2116snssd 4473 . . . . . 6 (𝜑 → {𝐸} ⊆ 𝑉)
22 hdmapinvlem3.o . . . . . . 7 𝑂 = ((ocH‘𝐾)‘𝑊)
231, 2, 3, 22dochssv 37158 . . . . . 6 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ⊆ 𝑉)
248, 21, 23syl2anc 565 . . . . 5 (𝜑 → (𝑂‘{𝐸}) ⊆ 𝑉)
25 hdmapinvlem3.d . . . . 5 (𝜑𝐷 ∈ (𝑂‘{𝐸}))
2624, 25sseldd 3751 . . . 4 (𝜑𝐷𝑉)
27 hdmapinvlem3.i . . . . . 6 (𝜑𝐼𝐵)
283, 5, 17, 18lmodvscl 19089 . . . . . 6 ((𝑈 ∈ LMod ∧ 𝐼𝐵𝐸𝑉) → (𝐼 · 𝐸) ∈ 𝑉)
299, 27, 16, 28syl3anc 1475 . . . . 5 (𝜑 → (𝐼 · 𝐸) ∈ 𝑉)
30 hdmapinvlem3.c . . . . . 6 (𝜑𝐶 ∈ (𝑂‘{𝐸}))
3124, 30sseldd 3751 . . . . 5 (𝜑𝐶𝑉)
32 hdmapinvlem3.p . . . . . 6 + = (+g𝑈)
333, 32lmodvacl 19086 . . . . 5 ((𝑈 ∈ LMod ∧ (𝐼 · 𝐸) ∈ 𝑉𝐶𝑉) → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
349, 29, 31, 33syl3anc 1475 . . . 4 (𝜑 → ((𝐼 · 𝐸) + 𝐶) ∈ 𝑉)
351, 2, 3, 4, 5, 6, 7, 8, 20, 26, 34hdmaplns1 37711 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)))
36 hdmapinvlem3.t . . . . 5 × = (.r𝑅)
37 hdmapinvlem3.z . . . . 5 0 = (0g𝑅)
38 hdmapinvlem3.g . . . . 5 𝐺 = ((HGMap‘𝐾)‘𝑊)
39 hdmapinvlem3.ij . . . . 5 (𝜑 → (𝐼 × (𝐺𝐽)) = ((𝑆𝐷)‘𝐶))
401, 14, 22, 2, 3, 32, 4, 17, 5, 18, 36, 37, 7, 38, 8, 30, 25, 27, 10, 39hdmapinvlem3 37723 . . . 4 (𝜑 → ((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 )
413, 4lmodvsubcl 19117 . . . . . 6 ((𝑈 ∈ LMod ∧ (𝐽 · 𝐸) ∈ 𝑉𝐷𝑉) → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
429, 20, 26, 41syl3anc 1475 . . . . 5 (𝜑 → ((𝐽 · 𝐸) 𝐷) ∈ 𝑉)
431, 2, 3, 5, 37, 7, 8, 42, 34hdmapip0com 37720 . . . 4 (𝜑 → (((𝑆‘((𝐽 · 𝐸) 𝐷))‘((𝐼 · 𝐸) + 𝐶)) = 0 ↔ ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 ))
4440, 43mpbid 222 . . 3 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘((𝐽 · 𝐸) 𝐷)) = 0 )
451, 2, 3, 17, 5, 18, 36, 7, 8, 16, 34, 10hdmaplnm1 37712 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)))
46 eqid 2770 . . . . . . . 8 (+g𝑅) = (+g𝑅)
471, 2, 3, 32, 5, 46, 7, 8, 16, 29, 31hdmaplna2 37713 . . . . . . 7 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)))
481, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 30hdmapinvlem2 37722 . . . . . . . 8 (𝜑 → ((𝑆𝐶)‘𝐸) = 0 )
4948oveq2d 6808 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅)((𝑆𝐶)‘𝐸)) = (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ))
505lmodring 19080 . . . . . . . . . . 11 (𝑈 ∈ LMod → 𝑅 ∈ Ring)
519, 50syl 17 . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
52 ringgrp 18759 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑅 ∈ Grp)
5351, 52syl 17 . . . . . . . . 9 (𝜑𝑅 ∈ Grp)
541, 2, 3, 5, 18, 7, 8, 16, 29hdmapipcl 37708 . . . . . . . . 9 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵)
5518, 46, 37grprid 17660 . . . . . . . . 9 ((𝑅 ∈ Grp ∧ ((𝑆‘(𝐼 · 𝐸))‘𝐸) ∈ 𝐵) → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
5653, 54, 55syl2anc 565 . . . . . . . 8 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = ((𝑆‘(𝐼 · 𝐸))‘𝐸))
571, 2, 3, 17, 5, 18, 36, 7, 38, 8, 16, 16, 27hdmapglnm2 37714 . . . . . . . 8 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐸) = (((𝑆𝐸)‘𝐸) × (𝐺𝐼)))
58 eqid 2770 . . . . . . . . . . 11 ((HVMap‘𝐾)‘𝑊) = ((HVMap‘𝐾)‘𝑊)
59 eqid 2770 . . . . . . . . . . 11 (1r𝑅) = (1r𝑅)
601, 14, 58, 7, 8, 2, 5, 59hdmapevec2 37639 . . . . . . . . . 10 (𝜑 → ((𝑆𝐸)‘𝐸) = (1r𝑅))
6160oveq1d 6807 . . . . . . . . 9 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = ((1r𝑅) × (𝐺𝐼)))
621, 2, 5, 18, 38, 8, 27hgmapcl 37692 . . . . . . . . . 10 (𝜑 → (𝐺𝐼) ∈ 𝐵)
6318, 36, 59ringlidm 18778 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6451, 62, 63syl2anc 565 . . . . . . . . 9 (𝜑 → ((1r𝑅) × (𝐺𝐼)) = (𝐺𝐼))
6561, 64eqtrd 2804 . . . . . . . 8 (𝜑 → (((𝑆𝐸)‘𝐸) × (𝐺𝐼)) = (𝐺𝐼))
6656, 57, 653eqtrd 2808 . . . . . . 7 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐸)(+g𝑅) 0 ) = (𝐺𝐼))
6747, 49, 663eqtrd 2808 . . . . . 6 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸) = (𝐺𝐼))
6867oveq2d 6808 . . . . 5 (𝜑 → (𝐽 × ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐸)) = (𝐽 × (𝐺𝐼)))
6945, 68eqtrd 2804 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸)) = (𝐽 × (𝐺𝐼)))
701, 2, 3, 32, 5, 46, 7, 8, 26, 29, 31hdmaplna2 37713 . . . . 5 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)))
711, 2, 3, 17, 5, 18, 36, 7, 38, 8, 26, 16, 27hdmapglnm2 37714 . . . . . . 7 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = (((𝑆𝐸)‘𝐷) × (𝐺𝐼)))
721, 14, 22, 2, 3, 5, 18, 36, 37, 7, 8, 25hdmapinvlem1 37721 . . . . . . . 8 (𝜑 → ((𝑆𝐸)‘𝐷) = 0 )
7372oveq1d 6807 . . . . . . 7 (𝜑 → (((𝑆𝐸)‘𝐷) × (𝐺𝐼)) = ( 0 × (𝐺𝐼)))
7418, 36, 37ringlz 18794 . . . . . . . 8 ((𝑅 ∈ Ring ∧ (𝐺𝐼) ∈ 𝐵) → ( 0 × (𝐺𝐼)) = 0 )
7551, 62, 74syl2anc 565 . . . . . . 7 (𝜑 → ( 0 × (𝐺𝐼)) = 0 )
7671, 73, 753eqtrd 2808 . . . . . 6 (𝜑 → ((𝑆‘(𝐼 · 𝐸))‘𝐷) = 0 )
7776oveq1d 6807 . . . . 5 (𝜑 → (((𝑆‘(𝐼 · 𝐸))‘𝐷)(+g𝑅)((𝑆𝐶)‘𝐷)) = ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)))
781, 2, 3, 5, 18, 7, 8, 26, 31hdmapipcl 37708 . . . . . 6 (𝜑 → ((𝑆𝐶)‘𝐷) ∈ 𝐵)
7918, 46, 37grplid 17659 . . . . . 6 ((𝑅 ∈ Grp ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8053, 78, 79syl2anc 565 . . . . 5 (𝜑 → ( 0 (+g𝑅)((𝑆𝐶)‘𝐷)) = ((𝑆𝐶)‘𝐷))
8170, 77, 803eqtrd 2808 . . . 4 (𝜑 → ((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷) = ((𝑆𝐶)‘𝐷))
8269, 81oveq12d 6810 . . 3 (𝜑 → (((𝑆‘((𝐼 · 𝐸) + 𝐶))‘(𝐽 · 𝐸))(-g𝑅)((𝑆‘((𝐼 · 𝐸) + 𝐶))‘𝐷)) = ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)))
8335, 44, 823eqtr3rd 2813 . 2 (𝜑 → ((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 )
845, 18, 36lmodmcl 19084 . . . 4 ((𝑈 ∈ LMod ∧ 𝐽𝐵 ∧ (𝐺𝐼) ∈ 𝐵) → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
859, 10, 62, 84syl3anc 1475 . . 3 (𝜑 → (𝐽 × (𝐺𝐼)) ∈ 𝐵)
8618, 37, 6grpsubeq0 17708 . . 3 ((𝑅 ∈ Grp ∧ (𝐽 × (𝐺𝐼)) ∈ 𝐵 ∧ ((𝑆𝐶)‘𝐷) ∈ 𝐵) → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8753, 85, 78, 86syl3anc 1475 . 2 (𝜑 → (((𝐽 × (𝐺𝐼))(-g𝑅)((𝑆𝐶)‘𝐷)) = 0 ↔ (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷)))
8883, 87mpbid 222 1 (𝜑 → (𝐽 × (𝐺𝐼)) = ((𝑆𝐶)‘𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382   = wceq 1630  wcel 2144  wss 3721  {csn 4314  cop 4320   I cid 5156  cres 5251  cfv 6031  (class class class)co 6792  Basecbs 16063  +gcplusg 16148  .rcmulr 16149  Scalarcsca 16151   ·𝑠 cvsca 16152  0gc0g 16307  Grpcgrp 17629  -gcsg 17631  1rcur 18708  Ringcrg 18754  LModclmod 19072  HLchlt 35152  LHypclh 35785  LTrncltrn 35902  DVecHcdvh 36881  ocHcoch 37150  HVMapchvm 37559  HDMapchdma 37595  HGMapchg 37686
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-riotaBAD 34754
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-fal 1636  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-ot 4323  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-om 7212  df-1st 7314  df-2nd 7315  df-tpos 7503  df-undef 7550  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-oadd 7716  df-er 7895  df-map 8010  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-n0 11494  df-z 11579  df-uz 11888  df-fz 12533  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-sca 16164  df-vsca 16165  df-0g 16309  df-mre 16453  df-mrc 16454  df-acs 16456  df-preset 17135  df-poset 17153  df-plt 17165  df-lub 17181  df-glb 17182  df-join 17183  df-meet 17184  df-p0 17246  df-p1 17247  df-lat 17253  df-clat 17315  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-subg 17798  df-cntz 17956  df-oppg 17982  df-lsm 18257  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-oppr 18830  df-dvdsr 18848  df-unit 18849  df-invr 18879  df-dvr 18890  df-drng 18958  df-lmod 19074  df-lss 19142  df-lsp 19184  df-lvec 19315  df-lsatoms 34778  df-lshyp 34779  df-lcv 34821  df-lfl 34860  df-lkr 34888  df-ldual 34926  df-oposet 34978  df-ol 34980  df-oml 34981  df-covers 35068  df-ats 35069  df-atl 35100  df-cvlat 35124  df-hlat 35153  df-llines 35299  df-lplanes 35300  df-lvols 35301  df-lines 35302  df-psubsp 35304  df-pmap 35305  df-padd 35597  df-lhyp 35789  df-laut 35790  df-ldil 35905  df-ltrn 35906  df-trl 35961  df-tgrp 36545  df-tendo 36557  df-edring 36559  df-dveca 36805  df-disoa 36832  df-dvech 36882  df-dib 36942  df-dic 36976  df-dih 37032  df-doch 37151  df-djh 37198  df-lcdual 37390  df-mapd 37428  df-hvmap 37560  df-hdmap1 37596  df-hdmap 37597  df-hgmap 37687
This theorem is referenced by:  hdmapglem5  37725  hgmapvvlem1  37726
  Copyright terms: Public domain W3C validator