![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmapglem7a | Structured version Visualization version GIF version |
Description: Lemma for hdmapg 37539. (Contributed by NM, 14-Jun-2015.) |
Ref | Expression |
---|---|
hdmapglem7.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmapglem7.e | ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 |
hdmapglem7.o | ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) |
hdmapglem7.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmapglem7.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmapglem7.p | ⊢ + = (+g‘𝑈) |
hdmapglem7.q | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmapglem7.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmapglem7.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmapglem7.a | ⊢ ⊕ = (LSSum‘𝑈) |
hdmapglem7.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmapglem7.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmapglem7.x | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
Ref | Expression |
---|---|
hdmapglem7a | ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmapglem7.x | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
2 | hdmapglem7.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
3 | hdmapglem7.o | . . . . . 6 ⊢ 𝑂 = ((ocH‘𝐾)‘𝑊) | |
4 | hdmapglem7.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
5 | hdmapglem7.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
6 | eqid 2651 | . . . . . 6 ⊢ (LSubSp‘𝑈) = (LSubSp‘𝑈) | |
7 | hdmapglem7.a | . . . . . 6 ⊢ ⊕ = (LSSum‘𝑈) | |
8 | hdmapglem7.k | . . . . . 6 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
9 | 2, 4, 8 | dvhlmod 36716 | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ LMod) |
10 | eqid 2651 | . . . . . . . . 9 ⊢ (Base‘𝐾) = (Base‘𝐾) | |
11 | eqid 2651 | . . . . . . . . 9 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
12 | eqid 2651 | . . . . . . . . 9 ⊢ (0g‘𝑈) = (0g‘𝑈) | |
13 | hdmapglem7.e | . . . . . . . . 9 ⊢ 𝐸 = 〈( I ↾ (Base‘𝐾)), ( I ↾ ((LTrn‘𝐾)‘𝑊))〉 | |
14 | 2, 10, 11, 4, 5, 12, 13, 8 | dvheveccl 36718 | . . . . . . . 8 ⊢ (𝜑 → 𝐸 ∈ (𝑉 ∖ {(0g‘𝑈)})) |
15 | 14 | eldifad 3619 | . . . . . . 7 ⊢ (𝜑 → 𝐸 ∈ 𝑉) |
16 | hdmapglem7.n | . . . . . . . 8 ⊢ 𝑁 = (LSpan‘𝑈) | |
17 | 5, 6, 16 | lspsncl 19025 | . . . . . . 7 ⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
18 | 9, 15, 17 | syl2anc 694 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝐸}) ∈ (LSubSp‘𝑈)) |
19 | 15 | snssd 4372 | . . . . . . . . 9 ⊢ (𝜑 → {𝐸} ⊆ 𝑉) |
20 | 2, 4, 3, 5, 16, 8, 19 | dochocsp 36985 | . . . . . . . 8 ⊢ (𝜑 → (𝑂‘(𝑁‘{𝐸})) = (𝑂‘{𝐸})) |
21 | 20 | fveq2d 6233 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘(𝑁‘{𝐸}))) = (𝑂‘(𝑂‘{𝐸}))) |
22 | 2, 4, 3, 5, 16, 8, 15 | dochocsn 36987 | . . . . . . 7 ⊢ (𝜑 → (𝑂‘(𝑂‘{𝐸})) = (𝑁‘{𝐸})) |
23 | 21, 22 | eqtrd 2685 | . . . . . 6 ⊢ (𝜑 → (𝑂‘(𝑂‘(𝑁‘{𝐸}))) = (𝑁‘{𝐸})) |
24 | 2, 3, 4, 5, 6, 7, 8, 18, 23 | dochexmid 37074 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝐸}) ⊕ (𝑂‘(𝑁‘{𝐸}))) = 𝑉) |
25 | 20 | oveq2d 6706 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝐸}) ⊕ (𝑂‘(𝑁‘{𝐸}))) = ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸}))) |
26 | 24, 25 | eqtr3d 2687 | . . . 4 ⊢ (𝜑 → 𝑉 = ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸}))) |
27 | 1, 26 | eleqtrd 2732 | . . 3 ⊢ (𝜑 → 𝑋 ∈ ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸}))) |
28 | 6 | lsssssubg 19006 | . . . . . 6 ⊢ (𝑈 ∈ LMod → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
29 | 9, 28 | syl 17 | . . . . 5 ⊢ (𝜑 → (LSubSp‘𝑈) ⊆ (SubGrp‘𝑈)) |
30 | 29, 18 | sseldd 3637 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝐸}) ∈ (SubGrp‘𝑈)) |
31 | 2, 4, 5, 6, 3 | dochlss 36960 | . . . . . 6 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ {𝐸} ⊆ 𝑉) → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
32 | 8, 19, 31 | syl2anc 694 | . . . . 5 ⊢ (𝜑 → (𝑂‘{𝐸}) ∈ (LSubSp‘𝑈)) |
33 | 29, 32 | sseldd 3637 | . . . 4 ⊢ (𝜑 → (𝑂‘{𝐸}) ∈ (SubGrp‘𝑈)) |
34 | hdmapglem7.p | . . . . 5 ⊢ + = (+g‘𝑈) | |
35 | 34, 7 | lsmelval 18110 | . . . 4 ⊢ (((𝑁‘{𝐸}) ∈ (SubGrp‘𝑈) ∧ (𝑂‘{𝐸}) ∈ (SubGrp‘𝑈)) → (𝑋 ∈ ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸})) ↔ ∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢))) |
36 | 30, 33, 35 | syl2anc 694 | . . 3 ⊢ (𝜑 → (𝑋 ∈ ((𝑁‘{𝐸}) ⊕ (𝑂‘{𝐸})) ↔ ∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢))) |
37 | 27, 36 | mpbid 222 | . 2 ⊢ (𝜑 → ∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢)) |
38 | rexcom 3128 | . . 3 ⊢ (∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢)) | |
39 | df-rex 2947 | . . . . 5 ⊢ (∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑎(𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢))) | |
40 | hdmapglem7.r | . . . . . . . . . . 11 ⊢ 𝑅 = (Scalar‘𝑈) | |
41 | hdmapglem7.b | . . . . . . . . . . 11 ⊢ 𝐵 = (Base‘𝑅) | |
42 | hdmapglem7.q | . . . . . . . . . . 11 ⊢ · = ( ·𝑠 ‘𝑈) | |
43 | 40, 41, 5, 42, 16 | lspsnel 19051 | . . . . . . . . . 10 ⊢ ((𝑈 ∈ LMod ∧ 𝐸 ∈ 𝑉) → (𝑎 ∈ (𝑁‘{𝐸}) ↔ ∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸))) |
44 | 9, 15, 43 | syl2anc 694 | . . . . . . . . 9 ⊢ (𝜑 → (𝑎 ∈ (𝑁‘{𝐸}) ↔ ∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸))) |
45 | 44 | anbi1d 741 | . . . . . . . 8 ⊢ (𝜑 → ((𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ (∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)))) |
46 | r19.41v 3118 | . . . . . . . 8 ⊢ (∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ (∃𝑘 ∈ 𝐵 𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢))) | |
47 | 45, 46 | syl6bbr 278 | . . . . . . 7 ⊢ (𝜑 → ((𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)))) |
48 | 47 | exbidv 1890 | . . . . . 6 ⊢ (𝜑 → (∃𝑎(𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑎∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)))) |
49 | rexcom4 3256 | . . . . . . 7 ⊢ (∃𝑘 ∈ 𝐵 ∃𝑎(𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑎∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢))) | |
50 | ovex 6718 | . . . . . . . . 9 ⊢ (𝑘 · 𝐸) ∈ V | |
51 | oveq1 6697 | . . . . . . . . . 10 ⊢ (𝑎 = (𝑘 · 𝐸) → (𝑎 + 𝑢) = ((𝑘 · 𝐸) + 𝑢)) | |
52 | 51 | eqeq2d 2661 | . . . . . . . . 9 ⊢ (𝑎 = (𝑘 · 𝐸) → (𝑋 = (𝑎 + 𝑢) ↔ 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
53 | 50, 52 | ceqsexv 3273 | . . . . . . . 8 ⊢ (∃𝑎(𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
54 | 53 | rexbii 3070 | . . . . . . 7 ⊢ (∃𝑘 ∈ 𝐵 ∃𝑎(𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
55 | 49, 54 | bitr3i 266 | . . . . . 6 ⊢ (∃𝑎∃𝑘 ∈ 𝐵 (𝑎 = (𝑘 · 𝐸) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
56 | 48, 55 | syl6bb 276 | . . . . 5 ⊢ (𝜑 → (∃𝑎(𝑎 ∈ (𝑁‘{𝐸}) ∧ 𝑋 = (𝑎 + 𝑢)) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
57 | 39, 56 | syl5bb 272 | . . . 4 ⊢ (𝜑 → (∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
58 | 57 | rexbidv 3081 | . . 3 ⊢ (𝜑 → (∃𝑢 ∈ (𝑂‘{𝐸})∃𝑎 ∈ (𝑁‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
59 | 38, 58 | syl5bb 272 | . 2 ⊢ (𝜑 → (∃𝑎 ∈ (𝑁‘{𝐸})∃𝑢 ∈ (𝑂‘{𝐸})𝑋 = (𝑎 + 𝑢) ↔ ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢))) |
60 | 37, 59 | mpbid 222 | 1 ⊢ (𝜑 → ∃𝑢 ∈ (𝑂‘{𝐸})∃𝑘 ∈ 𝐵 𝑋 = ((𝑘 · 𝐸) + 𝑢)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ∃wrex 2942 ⊆ wss 3607 {csn 4210 〈cop 4216 I cid 5052 ↾ cres 5145 ‘cfv 5926 (class class class)co 6690 Basecbs 15904 +gcplusg 15988 Scalarcsca 15991 ·𝑠 cvsca 15992 0gc0g 16147 SubGrpcsubg 17635 LSSumclsm 18095 LModclmod 18911 LSubSpclss 18980 LSpanclspn 19019 HLchlt 34955 LHypclh 35588 LTrncltrn 35705 DVecHcdvh 36684 ocHcoch 36953 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 ax-riotaBAD 34557 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-fal 1529 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-iin 4555 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-tpos 7397 df-undef 7444 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-map 7901 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-3 11118 df-4 11119 df-5 11120 df-6 11121 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-struct 15906 df-ndx 15907 df-slot 15908 df-base 15910 df-sets 15911 df-ress 15912 df-plusg 16001 df-mulr 16002 df-sca 16004 df-vsca 16005 df-0g 16149 df-mre 16293 df-mrc 16294 df-acs 16296 df-preset 16975 df-poset 16993 df-plt 17005 df-lub 17021 df-glb 17022 df-join 17023 df-meet 17024 df-p0 17086 df-p1 17087 df-lat 17093 df-clat 17155 df-mgm 17289 df-sgrp 17331 df-mnd 17342 df-submnd 17383 df-grp 17472 df-minusg 17473 df-sbg 17474 df-subg 17638 df-cntz 17796 df-oppg 17822 df-lsm 18097 df-cmn 18241 df-abl 18242 df-mgp 18536 df-ur 18548 df-ring 18595 df-oppr 18669 df-dvdsr 18687 df-unit 18688 df-invr 18718 df-dvr 18729 df-drng 18797 df-lmod 18913 df-lss 18981 df-lsp 19020 df-lvec 19151 df-lsatoms 34581 df-lcv 34624 df-oposet 34781 df-ol 34783 df-oml 34784 df-covers 34871 df-ats 34872 df-atl 34903 df-cvlat 34927 df-hlat 34956 df-llines 35102 df-lplanes 35103 df-lvols 35104 df-lines 35105 df-psubsp 35107 df-pmap 35108 df-padd 35400 df-lhyp 35592 df-laut 35593 df-ldil 35708 df-ltrn 35709 df-trl 35764 df-tgrp 36348 df-tendo 36360 df-edring 36362 df-dveca 36608 df-disoa 36635 df-dvech 36685 df-dib 36745 df-dic 36779 df-dih 36835 df-doch 36954 df-djh 37001 |
This theorem is referenced by: hdmapglem7 37538 |
Copyright terms: Public domain | W3C validator |