 Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap1vallem Structured version   Visualization version   GIF version

Theorem hdmap1vallem 37404
 Description: Value of preliminary map from vectors to functionals in the closed kernel dual space. (Contributed by NM, 15-May-2015.)
Hypotheses
Ref Expression
hdmap1val.h 𝐻 = (LHyp‘𝐾)
hdmap1fval.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap1fval.v 𝑉 = (Base‘𝑈)
hdmap1fval.s = (-g𝑈)
hdmap1fval.o 0 = (0g𝑈)
hdmap1fval.n 𝑁 = (LSpan‘𝑈)
hdmap1fval.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap1fval.d 𝐷 = (Base‘𝐶)
hdmap1fval.r 𝑅 = (-g𝐶)
hdmap1fval.q 𝑄 = (0g𝐶)
hdmap1fval.j 𝐽 = (LSpan‘𝐶)
hdmap1fval.m 𝑀 = ((mapd‘𝐾)‘𝑊)
hdmap1fval.i 𝐼 = ((HDMap1‘𝐾)‘𝑊)
hdmap1fval.k (𝜑 → (𝐾𝐴𝑊𝐻))
hdmap1val.t (𝜑𝑇 ∈ ((𝑉 × 𝐷) × 𝑉))
Assertion
Ref Expression
hdmap1vallem (𝜑 → (𝐼𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
Distinct variable groups:   𝐶,   𝐷,   ,𝐽   ,𝑀   ,𝑁   𝑈,   ,𝑉   𝑇,
Allowed substitution hints:   𝜑()   𝐴()   𝑄()   𝑅()   𝐻()   𝐼()   𝐾()   ()   𝑊()   0 ()

Proof of Theorem hdmap1vallem
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 hdmap1val.h . . . 4 𝐻 = (LHyp‘𝐾)
2 hdmap1fval.u . . . 4 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap1fval.v . . . 4 𝑉 = (Base‘𝑈)
4 hdmap1fval.s . . . 4 = (-g𝑈)
5 hdmap1fval.o . . . 4 0 = (0g𝑈)
6 hdmap1fval.n . . . 4 𝑁 = (LSpan‘𝑈)
7 hdmap1fval.c . . . 4 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap1fval.d . . . 4 𝐷 = (Base‘𝐶)
9 hdmap1fval.r . . . 4 𝑅 = (-g𝐶)
10 hdmap1fval.q . . . 4 𝑄 = (0g𝐶)
11 hdmap1fval.j . . . 4 𝐽 = (LSpan‘𝐶)
12 hdmap1fval.m . . . 4 𝑀 = ((mapd‘𝐾)‘𝑊)
13 hdmap1fval.i . . . 4 𝐼 = ((HDMap1‘𝐾)‘𝑊)
14 hdmap1fval.k . . . 4 (𝜑 → (𝐾𝐴𝑊𝐻))
151, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14hdmap1fval 37403 . . 3 (𝜑𝐼 = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))))))
1615fveq1d 6231 . 2 (𝜑 → (𝐼𝑇) = ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇))
17 hdmap1val.t . . 3 (𝜑𝑇 ∈ ((𝑉 × 𝐷) × 𝑉))
18 fvex 6239 . . . . 5 (0g𝐶) ∈ V
1910, 18eqeltri 2726 . . . 4 𝑄 ∈ V
20 riotaex 6655 . . . 4 (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))) ∈ V
2119, 20ifex 4189 . . 3 if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))) ∈ V
22 fveq2 6229 . . . . . 6 (𝑥 = 𝑇 → (2nd𝑥) = (2nd𝑇))
2322eqeq1d 2653 . . . . 5 (𝑥 = 𝑇 → ((2nd𝑥) = 0 ↔ (2nd𝑇) = 0 ))
2422sneqd 4222 . . . . . . . . . 10 (𝑥 = 𝑇 → {(2nd𝑥)} = {(2nd𝑇)})
2524fveq2d 6233 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑁‘{(2nd𝑥)}) = (𝑁‘{(2nd𝑇)}))
2625fveq2d 6233 . . . . . . . 8 (𝑥 = 𝑇 → (𝑀‘(𝑁‘{(2nd𝑥)})) = (𝑀‘(𝑁‘{(2nd𝑇)})))
2726eqeq1d 2653 . . . . . . 7 (𝑥 = 𝑇 → ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ↔ (𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{})))
28 fveq2 6229 . . . . . . . . . . . . 13 (𝑥 = 𝑇 → (1st𝑥) = (1st𝑇))
2928fveq2d 6233 . . . . . . . . . . . 12 (𝑥 = 𝑇 → (1st ‘(1st𝑥)) = (1st ‘(1st𝑇)))
3029, 22oveq12d 6708 . . . . . . . . . . 11 (𝑥 = 𝑇 → ((1st ‘(1st𝑥)) (2nd𝑥)) = ((1st ‘(1st𝑇)) (2nd𝑇)))
3130sneqd 4222 . . . . . . . . . 10 (𝑥 = 𝑇 → {((1st ‘(1st𝑥)) (2nd𝑥))} = {((1st ‘(1st𝑇)) (2nd𝑇))})
3231fveq2d 6233 . . . . . . . . 9 (𝑥 = 𝑇 → (𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))}) = (𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))}))
3332fveq2d 6233 . . . . . . . 8 (𝑥 = 𝑇 → (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})))
3428fveq2d 6233 . . . . . . . . . . 11 (𝑥 = 𝑇 → (2nd ‘(1st𝑥)) = (2nd ‘(1st𝑇)))
3534oveq1d 6705 . . . . . . . . . 10 (𝑥 = 𝑇 → ((2nd ‘(1st𝑥))𝑅) = ((2nd ‘(1st𝑇))𝑅))
3635sneqd 4222 . . . . . . . . 9 (𝑥 = 𝑇 → {((2nd ‘(1st𝑥))𝑅)} = {((2nd ‘(1st𝑇))𝑅)})
3736fveq2d 6233 . . . . . . . 8 (𝑥 = 𝑇 → (𝐽‘{((2nd ‘(1st𝑥))𝑅)}) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))
3833, 37eqeq12d 2666 . . . . . . 7 (𝑥 = 𝑇 → ((𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}) ↔ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))
3927, 38anbi12d 747 . . . . . 6 (𝑥 = 𝑇 → (((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})) ↔ ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))))
4039riotabidv 6653 . . . . 5 (𝑥 = 𝑇 → (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))) = (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)}))))
4123, 40ifbieq2d 4144 . . . 4 (𝑥 = 𝑇 → if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
42 eqid 2651 . . . 4 (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)}))))) = (𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))
4341, 42fvmptg 6319 . . 3 ((𝑇 ∈ ((𝑉 × 𝐷) × 𝑉) ∧ if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))) ∈ V) → ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
4417, 21, 43sylancl 695 . 2 (𝜑 → ((𝑥 ∈ ((𝑉 × 𝐷) × 𝑉) ↦ if((2nd𝑥) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑥)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑥)) (2nd𝑥))})) = (𝐽‘{((2nd ‘(1st𝑥))𝑅)})))))‘𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
4516, 44eqtrd 2685 1 (𝜑 → (𝐼𝑇) = if((2nd𝑇) = 0 , 𝑄, (𝐷 ((𝑀‘(𝑁‘{(2nd𝑇)})) = (𝐽‘{}) ∧ (𝑀‘(𝑁‘{((1st ‘(1st𝑇)) (2nd𝑇))})) = (𝐽‘{((2nd ‘(1st𝑇))𝑅)})))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1523   ∈ wcel 2030  Vcvv 3231  ifcif 4119  {csn 4210   ↦ cmpt 4762   × cxp 5141  ‘cfv 5926  ℩crio 6650  (class class class)co 6690  1st c1st 7208  2nd c2nd 7209  Basecbs 15904  0gc0g 16147  -gcsg 17471  LSpanclspn 19019  LHypclh 35588  DVecHcdvh 36684  LCDualclcd 37192  mapdcmpd 37230  HDMap1chdma1 37398 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-8 2032  ax-9 2039  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282  ax-ext 2631  ax-rep 4804  ax-sep 4814  ax-nul 4822  ax-pow 4873  ax-pr 4936  ax-un 6991 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1056  df-tru 1526  df-ex 1745  df-nf 1750  df-sb 1938  df-eu 2502  df-mo 2503  df-clab 2638  df-cleq 2644  df-clel 2647  df-nfc 2782  df-ne 2824  df-ral 2946  df-rex 2947  df-reu 2948  df-rab 2950  df-v 3233  df-sbc 3469  df-csb 3567  df-dif 3610  df-un 3612  df-in 3614  df-ss 3621  df-nul 3949  df-if 4120  df-pw 4193  df-sn 4211  df-pr 4213  df-op 4217  df-uni 4469  df-iun 4554  df-br 4686  df-opab 4746  df-mpt 4763  df-id 5053  df-xp 5149  df-rel 5150  df-cnv 5151  df-co 5152  df-dm 5153  df-rn 5154  df-res 5155  df-ima 5156  df-iota 5889  df-fun 5928  df-fn 5929  df-f 5930  df-f1 5931  df-fo 5932  df-f1o 5933  df-fv 5934  df-riota 6651  df-ov 6693  df-hdmap1 37400 This theorem is referenced by:  hdmap1val  37405
 Copyright terms: Public domain W3C validator