![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1l6b | Structured version Visualization version GIF version |
Description: Lemmma for hdmap1l6 37631. (Contributed by NM, 24-Apr-2015.) |
Ref | Expression |
---|---|
hdmap1l6.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1l6.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1l6.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1l6.p | ⊢ + = (+g‘𝑈) |
hdmap1l6.s | ⊢ − = (-g‘𝑈) |
hdmap1l6c.o | ⊢ 0 = (0g‘𝑈) |
hdmap1l6.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1l6.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1l6.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1l6.a | ⊢ ✚ = (+g‘𝐶) |
hdmap1l6.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1l6.q | ⊢ 𝑄 = (0g‘𝐶) |
hdmap1l6.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1l6.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1l6.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1l6.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1l6.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1l6cl.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1l6.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
hdmap1l6b.y | ⊢ (𝜑 → 𝑌 = 0 ) |
hdmap1l6b.z | ⊢ (𝜑 → 𝑍 ∈ 𝑉) |
hdmap1l6b.ne | ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) |
Ref | Expression |
---|---|
hdmap1l6b | ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1l6.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1l6.c | . . . . 5 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
3 | hdmap1l6.k | . . . . 5 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
4 | 1, 2, 3 | lcdlmod 37402 | . . . 4 ⊢ (𝜑 → 𝐶 ∈ LMod) |
5 | lmodgrp 19080 | . . . 4 ⊢ (𝐶 ∈ LMod → 𝐶 ∈ Grp) | |
6 | 4, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐶 ∈ Grp) |
7 | hdmap1l6.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
8 | hdmap1l6.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
9 | hdmap1l6c.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
10 | hdmap1l6.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
11 | hdmap1l6.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
12 | hdmap1l6.l | . . . 4 ⊢ 𝐿 = (LSpan‘𝐶) | |
13 | hdmap1l6.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
14 | hdmap1l6.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
15 | hdmap1l6.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
16 | hdmap1l6.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
17 | 1, 7, 3 | dvhlvec 36919 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ LVec) |
18 | hdmap1l6cl.x | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
19 | 18 | eldifad 3735 | . . . . . 6 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
20 | hdmap1l6b.y | . . . . . . 7 ⊢ (𝜑 → 𝑌 = 0 ) | |
21 | 1, 7, 3 | dvhlmod 36920 | . . . . . . . 8 ⊢ (𝜑 → 𝑈 ∈ LMod) |
22 | 8, 9 | lmod0vcl 19102 | . . . . . . . 8 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
23 | 21, 22 | syl 17 | . . . . . . 7 ⊢ (𝜑 → 0 ∈ 𝑉) |
24 | 20, 23 | eqeltrd 2850 | . . . . . 6 ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
25 | hdmap1l6b.z | . . . . . 6 ⊢ (𝜑 → 𝑍 ∈ 𝑉) | |
26 | hdmap1l6b.ne | . . . . . 6 ⊢ (𝜑 → ¬ 𝑋 ∈ (𝑁‘{𝑌, 𝑍})) | |
27 | 8, 10, 17, 19, 24, 25, 26 | lspindpi 19346 | . . . . 5 ⊢ (𝜑 → ((𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) ∧ (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍}))) |
28 | 27 | simprd 483 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑍})) |
29 | 1, 7, 8, 9, 10, 2, 11, 12, 13, 14, 3, 15, 16, 28, 18, 25 | hdmap1cl 37614 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) |
30 | hdmap1l6.a | . . . 4 ⊢ ✚ = (+g‘𝐶) | |
31 | hdmap1l6.q | . . . 4 ⊢ 𝑄 = (0g‘𝐶) | |
32 | 11, 30, 31 | grplid 17660 | . . 3 ⊢ ((𝐶 ∈ Grp ∧ (𝐼‘〈𝑋, 𝐹, 𝑍〉) ∈ 𝐷) → (𝑄 ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) |
33 | 6, 29, 32 | syl2anc 573 | . 2 ⊢ (𝜑 → (𝑄 ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) |
34 | 20 | oteq3d 4554 | . . . . 5 ⊢ (𝜑 → 〈𝑋, 𝐹, 𝑌〉 = 〈𝑋, 𝐹, 0 〉) |
35 | 34 | fveq2d 6337 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (𝐼‘〈𝑋, 𝐹, 0 〉)) |
36 | 1, 7, 8, 9, 2, 11, 31, 14, 3, 15, 19 | hdmap1val0 37609 | . . . 4 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 0 〉) = 𝑄) |
37 | 35, 36 | eqtrd 2805 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝑄) |
38 | 37 | oveq1d 6811 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉)) = (𝑄 ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
39 | 20 | oveq1d 6811 | . . . . 5 ⊢ (𝜑 → (𝑌 + 𝑍) = ( 0 + 𝑍)) |
40 | lmodgrp 19080 | . . . . . . 7 ⊢ (𝑈 ∈ LMod → 𝑈 ∈ Grp) | |
41 | 21, 40 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑈 ∈ Grp) |
42 | hdmap1l6.p | . . . . . . 7 ⊢ + = (+g‘𝑈) | |
43 | 8, 42, 9 | grplid 17660 | . . . . . 6 ⊢ ((𝑈 ∈ Grp ∧ 𝑍 ∈ 𝑉) → ( 0 + 𝑍) = 𝑍) |
44 | 41, 25, 43 | syl2anc 573 | . . . . 5 ⊢ (𝜑 → ( 0 + 𝑍) = 𝑍) |
45 | 39, 44 | eqtrd 2805 | . . . 4 ⊢ (𝜑 → (𝑌 + 𝑍) = 𝑍) |
46 | 45 | oteq3d 4554 | . . 3 ⊢ (𝜑 → 〈𝑋, 𝐹, (𝑌 + 𝑍)〉 = 〈𝑋, 𝐹, 𝑍〉) |
47 | 46 | fveq2d 6337 | . 2 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = (𝐼‘〈𝑋, 𝐹, 𝑍〉)) |
48 | 33, 38, 47 | 3eqtr4rd 2816 | 1 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, (𝑌 + 𝑍)〉) = ((𝐼‘〈𝑋, 𝐹, 𝑌〉) ✚ (𝐼‘〈𝑋, 𝐹, 𝑍〉))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∖ cdif 3720 {csn 4317 {cpr 4319 〈cotp 4325 ‘cfv 6030 (class class class)co 6796 Basecbs 16064 +gcplusg 16149 0gc0g 16308 Grpcgrp 17630 -gcsg 17632 LModclmod 19073 LSpanclspn 19184 HLchlt 35159 LHypclh 35793 DVecHcdvh 36888 LCDualclcd 37396 mapdcmpd 37434 HDMap1chdma1 37601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-ot 4326 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-of 7048 df-om 7217 df-1st 7319 df-2nd 7320 df-tpos 7508 df-undef 7555 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-3 11286 df-4 11287 df-5 11288 df-6 11289 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-0g 16310 df-mre 16454 df-mrc 16455 df-acs 16457 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-oppg 17983 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lsatoms 34785 df-lshyp 34786 df-lcv 34828 df-lfl 34867 df-lkr 34895 df-ldual 34933 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35307 df-lplanes 35308 df-lvols 35309 df-lines 35310 df-psubsp 35312 df-pmap 35313 df-padd 35605 df-lhyp 35797 df-laut 35798 df-ldil 35913 df-ltrn 35914 df-trl 35969 df-tgrp 36553 df-tendo 36565 df-edring 36567 df-dveca 36813 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dic 36983 df-dih 37039 df-doch 37158 df-djh 37205 df-lcdual 37397 df-mapd 37435 df-hdmap1 37603 |
This theorem is referenced by: hdmap1l6k 37630 |
Copyright terms: Public domain | W3C validator |