![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap1eq | Structured version Visualization version GIF version |
Description: The defining equation for h(x,x',y)=y' in part (2) in [Baer] p. 45 line 24. (Contributed by NM, 16-May-2015.) |
Ref | Expression |
---|---|
hdmap1val2.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap1val2.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap1val2.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap1val2.s | ⊢ − = (-g‘𝑈) |
hdmap1val2.o | ⊢ 0 = (0g‘𝑈) |
hdmap1val2.n | ⊢ 𝑁 = (LSpan‘𝑈) |
hdmap1val2.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap1val2.d | ⊢ 𝐷 = (Base‘𝐶) |
hdmap1val2.r | ⊢ 𝑅 = (-g‘𝐶) |
hdmap1val2.l | ⊢ 𝐿 = (LSpan‘𝐶) |
hdmap1val2.m | ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) |
hdmap1val2.i | ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) |
hdmap1val2.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap1eq.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap1eq.f | ⊢ (𝜑 → 𝐹 ∈ 𝐷) |
hdmap1eq.y | ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) |
hdmap1eq.g | ⊢ (𝜑 → 𝐺 ∈ 𝐷) |
hdmap1eq.e | ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) |
hdmap1eq.mn | ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) |
Ref | Expression |
---|---|
hdmap1eq | ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap1val2.h | . . . 4 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap1val2.u | . . . 4 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap1val2.v | . . . 4 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap1val2.s | . . . 4 ⊢ − = (-g‘𝑈) | |
5 | hdmap1val2.o | . . . 4 ⊢ 0 = (0g‘𝑈) | |
6 | hdmap1val2.n | . . . 4 ⊢ 𝑁 = (LSpan‘𝑈) | |
7 | hdmap1val2.c | . . . 4 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap1val2.d | . . . 4 ⊢ 𝐷 = (Base‘𝐶) | |
9 | hdmap1val2.r | . . . 4 ⊢ 𝑅 = (-g‘𝐶) | |
10 | hdmap1val2.l | . . . 4 ⊢ 𝐿 = (LSpan‘𝐶) | |
11 | hdmap1val2.m | . . . 4 ⊢ 𝑀 = ((mapd‘𝐾)‘𝑊) | |
12 | hdmap1val2.i | . . . 4 ⊢ 𝐼 = ((HDMap1‘𝐾)‘𝑊) | |
13 | hdmap1val2.k | . . . 4 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | hdmap1eq.x | . . . . 5 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
15 | 14 | eldifad 3735 | . . . 4 ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
16 | hdmap1eq.f | . . . 4 ⊢ (𝜑 → 𝐹 ∈ 𝐷) | |
17 | hdmap1eq.y | . . . 4 ⊢ (𝜑 → 𝑌 ∈ (𝑉 ∖ { 0 })) | |
18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 15, 16, 17 | hdmap1val2 37610 | . . 3 ⊢ (𝜑 → (𝐼‘〈𝑋, 𝐹, 𝑌〉) = (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})))) |
19 | 18 | eqeq1d 2773 | . 2 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))) = 𝐺)) |
20 | hdmap1eq.e | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌})) | |
21 | hdmap1eq.mn | . . . 4 ⊢ (𝜑 → (𝑀‘(𝑁‘{𝑋})) = (𝐿‘{𝐹})) | |
22 | 1, 11, 2, 3, 4, 5, 6, 7, 8, 9, 10, 13, 14, 17, 16, 20, 21 | mapdpg 37516 | . . 3 ⊢ (𝜑 → ∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))) |
23 | nfv 1995 | . . . 4 ⊢ Ⅎℎ𝜑 | |
24 | nfcvd 2914 | . . . 4 ⊢ (𝜑 → Ⅎℎ𝐺) | |
25 | nfvd 1996 | . . . 4 ⊢ (𝜑 → Ⅎℎ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))) | |
26 | hdmap1eq.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ 𝐷) | |
27 | sneq 4326 | . . . . . . . 8 ⊢ (ℎ = 𝐺 → {ℎ} = {𝐺}) | |
28 | 27 | fveq2d 6336 | . . . . . . 7 ⊢ (ℎ = 𝐺 → (𝐿‘{ℎ}) = (𝐿‘{𝐺})) |
29 | 28 | eqeq2d 2781 | . . . . . 6 ⊢ (ℎ = 𝐺 → ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ↔ (𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}))) |
30 | oveq2 6801 | . . . . . . . . 9 ⊢ (ℎ = 𝐺 → (𝐹𝑅ℎ) = (𝐹𝑅𝐺)) | |
31 | 30 | sneqd 4328 | . . . . . . . 8 ⊢ (ℎ = 𝐺 → {(𝐹𝑅ℎ)} = {(𝐹𝑅𝐺)}) |
32 | 31 | fveq2d 6336 | . . . . . . 7 ⊢ (ℎ = 𝐺 → (𝐿‘{(𝐹𝑅ℎ)}) = (𝐿‘{(𝐹𝑅𝐺)})) |
33 | 32 | eqeq2d 2781 | . . . . . 6 ⊢ (ℎ = 𝐺 → ((𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}) ↔ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)}))) |
34 | 29, 33 | anbi12d 616 | . . . . 5 ⊢ (ℎ = 𝐺 → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) |
35 | 34 | adantl 467 | . . . 4 ⊢ ((𝜑 ∧ ℎ = 𝐺) → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)})) ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) |
36 | 23, 24, 25, 26, 35 | riota2df 6774 | . . 3 ⊢ ((𝜑 ∧ ∃!ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))) → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})) ↔ (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))) = 𝐺)) |
37 | 22, 36 | mpdan 667 | . 2 ⊢ (𝜑 → (((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})) ↔ (℩ℎ ∈ 𝐷 ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{ℎ}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅ℎ)}))) = 𝐺)) |
38 | 19, 37 | bitr4d 271 | 1 ⊢ (𝜑 → ((𝐼‘〈𝑋, 𝐹, 𝑌〉) = 𝐺 ↔ ((𝑀‘(𝑁‘{𝑌})) = (𝐿‘{𝐺}) ∧ (𝑀‘(𝑁‘{(𝑋 − 𝑌)})) = (𝐿‘{(𝐹𝑅𝐺)})))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 382 = wceq 1631 ∈ wcel 2145 ≠ wne 2943 ∃!wreu 3063 ∖ cdif 3720 {csn 4316 〈cotp 4324 ‘cfv 6031 ℩crio 6753 (class class class)co 6793 Basecbs 16064 0gc0g 16308 -gcsg 17632 LSpanclspn 19184 HLchlt 35159 LHypclh 35792 DVecHcdvh 36888 LCDualclcd 37396 mapdcmpd 37434 HDMap1chdma1 37601 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4904 ax-sep 4915 ax-nul 4923 ax-pow 4974 ax-pr 5034 ax-un 7096 ax-cnex 10194 ax-resscn 10195 ax-1cn 10196 ax-icn 10197 ax-addcl 10198 ax-addrcl 10199 ax-mulcl 10200 ax-mulrcl 10201 ax-mulcom 10202 ax-addass 10203 ax-mulass 10204 ax-distr 10205 ax-i2m1 10206 ax-1ne0 10207 ax-1rid 10208 ax-rnegex 10209 ax-rrecex 10210 ax-cnre 10211 ax-pre-lttri 10212 ax-pre-lttrn 10213 ax-pre-ltadd 10214 ax-pre-mulgt0 10215 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-fal 1637 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4226 df-pw 4299 df-sn 4317 df-pr 4319 df-tp 4321 df-op 4323 df-ot 4325 df-uni 4575 df-int 4612 df-iun 4656 df-iin 4657 df-br 4787 df-opab 4847 df-mpt 4864 df-tr 4887 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6754 df-ov 6796 df-oprab 6797 df-mpt2 6798 df-of 7044 df-om 7213 df-1st 7315 df-2nd 7316 df-tpos 7504 df-undef 7551 df-wrecs 7559 df-recs 7621 df-rdg 7659 df-1o 7713 df-oadd 7717 df-er 7896 df-map 8011 df-en 8110 df-dom 8111 df-sdom 8112 df-fin 8113 df-pnf 10278 df-mnf 10279 df-xr 10280 df-ltxr 10281 df-le 10282 df-sub 10470 df-neg 10471 df-nn 11223 df-2 11281 df-3 11282 df-4 11283 df-5 11284 df-6 11285 df-n0 11495 df-z 11580 df-uz 11889 df-fz 12534 df-struct 16066 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-mulr 16163 df-sca 16165 df-vsca 16166 df-0g 16310 df-mre 16454 df-mrc 16455 df-acs 16457 df-preset 17136 df-poset 17154 df-plt 17166 df-lub 17182 df-glb 17183 df-join 17184 df-meet 17185 df-p0 17247 df-p1 17248 df-lat 17254 df-clat 17316 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-submnd 17544 df-grp 17633 df-minusg 17634 df-sbg 17635 df-subg 17799 df-cntz 17957 df-oppg 17983 df-lsm 18258 df-cmn 18402 df-abl 18403 df-mgp 18698 df-ur 18710 df-ring 18757 df-oppr 18831 df-dvdsr 18849 df-unit 18850 df-invr 18880 df-dvr 18891 df-drng 18959 df-lmod 19075 df-lss 19143 df-lsp 19185 df-lvec 19316 df-lsatoms 34785 df-lshyp 34786 df-lcv 34828 df-lfl 34867 df-lkr 34895 df-ldual 34933 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tgrp 36552 df-tendo 36564 df-edring 36566 df-dveca 36812 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dic 36983 df-dih 37039 df-doch 37158 df-djh 37205 df-lcdual 37397 df-mapd 37435 df-hdmap1 37603 |
This theorem is referenced by: hdmap1l6lem1 37617 hdmap1l6lem2 37618 hdmap1l6a 37619 hdmapval3lemN 37647 hdmap10lem 37649 hdmap11lem1 37651 |
Copyright terms: Public domain | W3C validator |