![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem13 | Structured version Visualization version GIF version |
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem12.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem12.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem12.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
Ref | Expression |
---|---|
hdmap14lem13 | ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . 3 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem12.u | . . 3 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem12.v | . . 3 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem12.t | . . 3 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem12.r | . . 3 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem12.b | . . 3 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem12.c | . . 3 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem12.e | . . 3 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | hdmap14lem12.s | . . 3 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
10 | hdmap14lem12.k | . . 3 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
11 | hdmap14lem12.f | . . 3 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
12 | hdmap14lem12.p | . . 3 ⊢ 𝑃 = (Scalar‘𝐶) | |
13 | hdmap14lem12.a | . . 3 ⊢ 𝐴 = (Base‘𝑃) | |
14 | hdmap14lem12.o | . . 3 ⊢ 0 = (0g‘𝑈) | |
15 | hdmap14lem12.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
16 | hdmap14lem12.g | . . 3 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
17 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | hdmap14lem12 37692 | . 2 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
18 | velsn 4338 | . . . . . 6 ⊢ (𝑦 ∈ { 0 } ↔ 𝑦 = 0 ) | |
19 | 1, 7, 10 | lcdlmod 37402 | . . . . . . . . 9 ⊢ (𝜑 → 𝐶 ∈ LMod) |
20 | eqid 2761 | . . . . . . . . . 10 ⊢ (0g‘𝐶) = (0g‘𝐶) | |
21 | 12, 8, 13, 20 | lmodvs0 19120 | . . . . . . . . 9 ⊢ ((𝐶 ∈ LMod ∧ 𝐺 ∈ 𝐴) → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
22 | 19, 16, 21 | syl2anc 696 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (0g‘𝐶)) = (0g‘𝐶)) |
23 | 1, 2, 14, 7, 20, 9, 10 | hdmapval0 37646 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘ 0 ) = (0g‘𝐶)) |
24 | 23 | oveq2d 6831 | . . . . . . . 8 ⊢ (𝜑 → (𝐺 ∙ (𝑆‘ 0 )) = (𝐺 ∙ (0g‘𝐶))) |
25 | 1, 2, 10 | dvhlmod 36920 | . . . . . . . . . . 11 ⊢ (𝜑 → 𝑈 ∈ LMod) |
26 | 5, 4, 6, 14 | lmodvs0 19120 | . . . . . . . . . . 11 ⊢ ((𝑈 ∈ LMod ∧ 𝐹 ∈ 𝐵) → (𝐹 · 0 ) = 0 ) |
27 | 25, 11, 26 | syl2anc 696 | . . . . . . . . . 10 ⊢ (𝜑 → (𝐹 · 0 ) = 0 ) |
28 | 27 | fveq2d 6358 | . . . . . . . . 9 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝑆‘ 0 )) |
29 | 28, 23 | eqtrd 2795 | . . . . . . . 8 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (0g‘𝐶)) |
30 | 22, 24, 29 | 3eqtr4rd 2806 | . . . . . . 7 ⊢ (𝜑 → (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 ))) |
31 | oveq2 6823 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝐹 · 𝑦) = (𝐹 · 0 )) | |
32 | 31 | fveq2d 6358 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 0 ))) |
33 | fveq2 6354 | . . . . . . . . 9 ⊢ (𝑦 = 0 → (𝑆‘𝑦) = (𝑆‘ 0 )) | |
34 | 33 | oveq2d 6831 | . . . . . . . 8 ⊢ (𝑦 = 0 → (𝐺 ∙ (𝑆‘𝑦)) = (𝐺 ∙ (𝑆‘ 0 ))) |
35 | 32, 34 | eqeq12d 2776 | . . . . . . 7 ⊢ (𝑦 = 0 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (𝑆‘(𝐹 · 0 )) = (𝐺 ∙ (𝑆‘ 0 )))) |
36 | 30, 35 | syl5ibrcom 237 | . . . . . 6 ⊢ (𝜑 → (𝑦 = 0 → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
37 | 18, 36 | syl5bi 232 | . . . . 5 ⊢ (𝜑 → (𝑦 ∈ { 0 } → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
38 | 37 | ralrimiv 3104 | . . . 4 ⊢ (𝜑 → ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
39 | 38 | biantrud 529 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))))) |
40 | ralunb 3938 | . . 3 ⊢ (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ∧ ∀𝑦 ∈ { 0 } (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) | |
41 | 39, 40 | syl6bbr 278 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
42 | 3, 14 | lmod0vcl 19115 | . . . 4 ⊢ (𝑈 ∈ LMod → 0 ∈ 𝑉) |
43 | difsnid 4487 | . . . 4 ⊢ ( 0 ∈ 𝑉 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) | |
44 | 25, 42, 43 | 3syl 18 | . . 3 ⊢ (𝜑 → ((𝑉 ∖ { 0 }) ∪ { 0 }) = 𝑉) |
45 | 44 | raleqdv 3284 | . 2 ⊢ (𝜑 → (∀𝑦 ∈ ((𝑉 ∖ { 0 }) ∪ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
46 | 17, 41, 45 | 3bitrd 294 | 1 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ 𝑉 (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∀wral 3051 ∖ cdif 3713 ∪ cun 3714 {csn 4322 ‘cfv 6050 (class class class)co 6815 Basecbs 16080 Scalarcsca 16167 ·𝑠 cvsca 16168 0gc0g 16323 LModclmod 19086 HLchlt 35159 LHypclh 35792 DVecHcdvh 36888 LCDualclcd 37396 HDMapchdma 37603 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 ax-riotaBAD 34761 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-ot 4331 df-uni 4590 df-int 4629 df-iun 4675 df-iin 4676 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-of 7064 df-om 7233 df-1st 7335 df-2nd 7336 df-tpos 7523 df-undef 7570 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-map 8028 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-2 11292 df-3 11293 df-4 11294 df-5 11295 df-6 11296 df-n0 11506 df-z 11591 df-uz 11901 df-fz 12541 df-struct 16082 df-ndx 16083 df-slot 16084 df-base 16086 df-sets 16087 df-ress 16088 df-plusg 16177 df-mulr 16178 df-sca 16180 df-vsca 16181 df-0g 16325 df-mre 16469 df-mrc 16470 df-acs 16472 df-preset 17150 df-poset 17168 df-plt 17180 df-lub 17196 df-glb 17197 df-join 17198 df-meet 17199 df-p0 17261 df-p1 17262 df-lat 17268 df-clat 17330 df-mgm 17464 df-sgrp 17506 df-mnd 17517 df-submnd 17558 df-grp 17647 df-minusg 17648 df-sbg 17649 df-subg 17813 df-cntz 17971 df-oppg 17997 df-lsm 18272 df-cmn 18416 df-abl 18417 df-mgp 18711 df-ur 18723 df-ring 18770 df-oppr 18844 df-dvdsr 18862 df-unit 18863 df-invr 18893 df-dvr 18904 df-drng 18972 df-lmod 19088 df-lss 19156 df-lsp 19195 df-lvec 19326 df-lsatoms 34785 df-lshyp 34786 df-lcv 34828 df-lfl 34867 df-lkr 34895 df-ldual 34933 df-oposet 34985 df-ol 34987 df-oml 34988 df-covers 35075 df-ats 35076 df-atl 35107 df-cvlat 35131 df-hlat 35160 df-llines 35306 df-lplanes 35307 df-lvols 35308 df-lines 35309 df-psubsp 35311 df-pmap 35312 df-padd 35604 df-lhyp 35796 df-laut 35797 df-ldil 35912 df-ltrn 35913 df-trl 35968 df-tgrp 36552 df-tendo 36564 df-edring 36566 df-dveca 36812 df-disoa 36839 df-dvech 36889 df-dib 36949 df-dic 36983 df-dih 37039 df-doch 37158 df-djh 37205 df-lcdual 37397 df-mapd 37435 df-hvmap 37567 df-hdmap1 37604 df-hdmap 37605 |
This theorem is referenced by: hdmap14lem14 37694 |
Copyright terms: Public domain | W3C validator |