![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > hdmap14lem12 | Structured version Visualization version GIF version |
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.) |
Ref | Expression |
---|---|
hdmap14lem12.h | ⊢ 𝐻 = (LHyp‘𝐾) |
hdmap14lem12.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
hdmap14lem12.v | ⊢ 𝑉 = (Base‘𝑈) |
hdmap14lem12.t | ⊢ · = ( ·𝑠 ‘𝑈) |
hdmap14lem12.r | ⊢ 𝑅 = (Scalar‘𝑈) |
hdmap14lem12.b | ⊢ 𝐵 = (Base‘𝑅) |
hdmap14lem12.c | ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) |
hdmap14lem12.e | ⊢ ∙ = ( ·𝑠 ‘𝐶) |
hdmap14lem12.s | ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) |
hdmap14lem12.k | ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
hdmap14lem12.f | ⊢ (𝜑 → 𝐹 ∈ 𝐵) |
hdmap14lem12.p | ⊢ 𝑃 = (Scalar‘𝐶) |
hdmap14lem12.a | ⊢ 𝐴 = (Base‘𝑃) |
hdmap14lem12.o | ⊢ 0 = (0g‘𝑈) |
hdmap14lem12.x | ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) |
hdmap14lem12.g | ⊢ (𝜑 → 𝐺 ∈ 𝐴) |
Ref | Expression |
---|---|
hdmap14lem12 | ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hdmap14lem12.h | . . . . . 6 ⊢ 𝐻 = (LHyp‘𝐾) | |
2 | hdmap14lem12.u | . . . . . 6 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
3 | hdmap14lem12.v | . . . . . 6 ⊢ 𝑉 = (Base‘𝑈) | |
4 | hdmap14lem12.t | . . . . . 6 ⊢ · = ( ·𝑠 ‘𝑈) | |
5 | hdmap14lem12.r | . . . . . 6 ⊢ 𝑅 = (Scalar‘𝑈) | |
6 | hdmap14lem12.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑅) | |
7 | hdmap14lem12.c | . . . . . 6 ⊢ 𝐶 = ((LCDual‘𝐾)‘𝑊) | |
8 | hdmap14lem12.e | . . . . . 6 ⊢ ∙ = ( ·𝑠 ‘𝐶) | |
9 | eqid 2760 | . . . . . 6 ⊢ (LSpan‘𝐶) = (LSpan‘𝐶) | |
10 | hdmap14lem12.p | . . . . . 6 ⊢ 𝑃 = (Scalar‘𝐶) | |
11 | hdmap14lem12.a | . . . . . 6 ⊢ 𝐴 = (Base‘𝑃) | |
12 | hdmap14lem12.s | . . . . . 6 ⊢ 𝑆 = ((HDMap‘𝐾)‘𝑊) | |
13 | hdmap14lem12.k | . . . . . . 7 ⊢ (𝜑 → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | |
14 | 13 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
15 | simp3 1133 | . . . . . . 7 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 })) | |
16 | 15 | eldifad 3727 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ 𝑉) |
17 | hdmap14lem12.f | . . . . . . 7 ⊢ (𝜑 → 𝐹 ∈ 𝐵) | |
18 | 17 | 3ad2ant1 1128 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹 ∈ 𝐵) |
19 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18 | hdmap14lem2a 37661 | . . . . 5 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) |
20 | simp3 1133 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) | |
21 | eqid 2760 | . . . . . . . . 9 ⊢ (+g‘𝑈) = (+g‘𝑈) | |
22 | hdmap14lem12.o | . . . . . . . . 9 ⊢ 0 = (0g‘𝑈) | |
23 | eqid 2760 | . . . . . . . . 9 ⊢ (LSpan‘𝑈) = (LSpan‘𝑈) | |
24 | eqid 2760 | . . . . . . . . 9 ⊢ (+g‘𝐶) = (+g‘𝐶) | |
25 | simp11 1246 | . . . . . . . . . 10 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝜑) | |
26 | 25, 13 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
27 | hdmap14lem12.x | . . . . . . . . . 10 ⊢ (𝜑 → 𝑋 ∈ (𝑉 ∖ { 0 })) | |
28 | 25, 27 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 })) |
29 | simp13 1248 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 })) | |
30 | 25, 17 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝐹 ∈ 𝐵) |
31 | hdmap14lem12.g | . . . . . . . . . 10 ⊢ (𝜑 → 𝐺 ∈ 𝐴) | |
32 | 25, 31 | syl 17 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝐺 ∈ 𝐴) |
33 | simp2 1132 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝑔 ∈ 𝐴) | |
34 | simp12 1247 | . . . . . . . . 9 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) | |
35 | 1, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20 | hdmap14lem11 37672 | . . . . . . . 8 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → 𝐺 = 𝑔) |
36 | 35 | oveq1d 6828 | . . . . . . 7 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝐺 ∙ (𝑆‘𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) |
37 | 20, 36 | eqtr4d 2797 | . . . . . 6 ⊢ (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔 ∈ 𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
38 | 37 | rexlimdv3a 3171 | . . . . 5 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔 ∈ 𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 ∙ (𝑆‘𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
39 | 19, 38 | mpd 15 | . . . 4 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
40 | 39 | 3expia 1115 | . . 3 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
41 | 40 | ralrimiv 3103 | . 2 ⊢ ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) |
42 | oveq2 6821 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋)) | |
43 | 42 | fveq2d 6356 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋))) |
44 | fveq2 6352 | . . . . . . 7 ⊢ (𝑦 = 𝑋 → (𝑆‘𝑦) = (𝑆‘𝑋)) | |
45 | 44 | oveq2d 6829 | . . . . . 6 ⊢ (𝑦 = 𝑋 → (𝐺 ∙ (𝑆‘𝑦)) = (𝐺 ∙ (𝑆‘𝑋))) |
46 | 43, 45 | eqeq12d 2775 | . . . . 5 ⊢ (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)))) |
47 | 46 | rspcv 3445 | . . . 4 ⊢ (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)))) |
48 | 27, 47 | syl 17 | . . 3 ⊢ (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)))) |
49 | 48 | imp 444 | . 2 ⊢ ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋))) |
50 | 41, 49 | impbida 913 | 1 ⊢ (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 ∙ (𝑆‘𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 ∙ (𝑆‘𝑦)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∧ w3a 1072 = wceq 1632 ∈ wcel 2139 ∀wral 3050 ∃wrex 3051 ∖ cdif 3712 {csn 4321 ‘cfv 6049 (class class class)co 6813 Basecbs 16059 +gcplusg 16143 Scalarcsca 16146 ·𝑠 cvsca 16147 0gc0g 16302 LSpanclspn 19173 HLchlt 35140 LHypclh 35773 DVecHcdvh 36869 LCDualclcd 37377 HDMapchdma 37584 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 ax-riotaBAD 34742 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-fal 1638 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-ot 4330 df-uni 4589 df-int 4628 df-iun 4674 df-iin 4675 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-of 7062 df-om 7231 df-1st 7333 df-2nd 7334 df-tpos 7521 df-undef 7568 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-map 8025 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-2 11271 df-3 11272 df-4 11273 df-5 11274 df-6 11275 df-n0 11485 df-z 11570 df-uz 11880 df-fz 12520 df-struct 16061 df-ndx 16062 df-slot 16063 df-base 16065 df-sets 16066 df-ress 16067 df-plusg 16156 df-mulr 16157 df-sca 16159 df-vsca 16160 df-0g 16304 df-mre 16448 df-mrc 16449 df-acs 16451 df-preset 17129 df-poset 17147 df-plt 17159 df-lub 17175 df-glb 17176 df-join 17177 df-meet 17178 df-p0 17240 df-p1 17241 df-lat 17247 df-clat 17309 df-mgm 17443 df-sgrp 17485 df-mnd 17496 df-submnd 17537 df-grp 17626 df-minusg 17627 df-sbg 17628 df-subg 17792 df-cntz 17950 df-oppg 17976 df-lsm 18251 df-cmn 18395 df-abl 18396 df-mgp 18690 df-ur 18702 df-ring 18749 df-oppr 18823 df-dvdsr 18841 df-unit 18842 df-invr 18872 df-dvr 18883 df-drng 18951 df-lmod 19067 df-lss 19135 df-lsp 19174 df-lvec 19305 df-lsatoms 34766 df-lshyp 34767 df-lcv 34809 df-lfl 34848 df-lkr 34876 df-ldual 34914 df-oposet 34966 df-ol 34968 df-oml 34969 df-covers 35056 df-ats 35057 df-atl 35088 df-cvlat 35112 df-hlat 35141 df-llines 35287 df-lplanes 35288 df-lvols 35289 df-lines 35290 df-psubsp 35292 df-pmap 35293 df-padd 35585 df-lhyp 35777 df-laut 35778 df-ldil 35893 df-ltrn 35894 df-trl 35949 df-tgrp 36533 df-tendo 36545 df-edring 36547 df-dveca 36793 df-disoa 36820 df-dvech 36870 df-dib 36930 df-dic 36964 df-dih 37020 df-doch 37139 df-djh 37186 df-lcdual 37378 df-mapd 37416 df-hvmap 37548 df-hdmap1 37585 df-hdmap 37586 |
This theorem is referenced by: hdmap14lem13 37674 |
Copyright terms: Public domain | W3C validator |