Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hdmap14lem12 Structured version   Visualization version   GIF version

Theorem hdmap14lem12 37673
Description: Lemma for proof of part 14 in [Baer] p. 50. (Contributed by NM, 6-Jun-2015.)
Hypotheses
Ref Expression
hdmap14lem12.h 𝐻 = (LHyp‘𝐾)
hdmap14lem12.u 𝑈 = ((DVecH‘𝐾)‘𝑊)
hdmap14lem12.v 𝑉 = (Base‘𝑈)
hdmap14lem12.t · = ( ·𝑠𝑈)
hdmap14lem12.r 𝑅 = (Scalar‘𝑈)
hdmap14lem12.b 𝐵 = (Base‘𝑅)
hdmap14lem12.c 𝐶 = ((LCDual‘𝐾)‘𝑊)
hdmap14lem12.e = ( ·𝑠𝐶)
hdmap14lem12.s 𝑆 = ((HDMap‘𝐾)‘𝑊)
hdmap14lem12.k (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
hdmap14lem12.f (𝜑𝐹𝐵)
hdmap14lem12.p 𝑃 = (Scalar‘𝐶)
hdmap14lem12.a 𝐴 = (Base‘𝑃)
hdmap14lem12.o 0 = (0g𝑈)
hdmap14lem12.x (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
hdmap14lem12.g (𝜑𝐺𝐴)
Assertion
Ref Expression
hdmap14lem12 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Distinct variable groups:   𝑦,𝐴   𝑦,   𝑦,𝐹   𝑦,𝐺   𝑦, 0   𝑦,𝑆   𝑦, ·   𝑦,𝑈   𝑦,𝑉   𝑦,𝑋   𝜑,𝑦
Allowed substitution hints:   𝐵(𝑦)   𝐶(𝑦)   𝑃(𝑦)   𝑅(𝑦)   𝐻(𝑦)   𝐾(𝑦)   𝑊(𝑦)

Proof of Theorem hdmap14lem12
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 hdmap14lem12.h . . . . . 6 𝐻 = (LHyp‘𝐾)
2 hdmap14lem12.u . . . . . 6 𝑈 = ((DVecH‘𝐾)‘𝑊)
3 hdmap14lem12.v . . . . . 6 𝑉 = (Base‘𝑈)
4 hdmap14lem12.t . . . . . 6 · = ( ·𝑠𝑈)
5 hdmap14lem12.r . . . . . 6 𝑅 = (Scalar‘𝑈)
6 hdmap14lem12.b . . . . . 6 𝐵 = (Base‘𝑅)
7 hdmap14lem12.c . . . . . 6 𝐶 = ((LCDual‘𝐾)‘𝑊)
8 hdmap14lem12.e . . . . . 6 = ( ·𝑠𝐶)
9 eqid 2760 . . . . . 6 (LSpan‘𝐶) = (LSpan‘𝐶)
10 hdmap14lem12.p . . . . . 6 𝑃 = (Scalar‘𝐶)
11 hdmap14lem12.a . . . . . 6 𝐴 = (Base‘𝑃)
12 hdmap14lem12.s . . . . . 6 𝑆 = ((HDMap‘𝐾)‘𝑊)
13 hdmap14lem12.k . . . . . . 7 (𝜑 → (𝐾 ∈ HL ∧ 𝑊𝐻))
14133ad2ant1 1128 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝐾 ∈ HL ∧ 𝑊𝐻))
15 simp3 1133 . . . . . . 7 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦 ∈ (𝑉 ∖ { 0 }))
1615eldifad 3727 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝑦𝑉)
17 hdmap14lem12.f . . . . . . 7 (𝜑𝐹𝐵)
18173ad2ant1 1128 . . . . . 6 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → 𝐹𝐵)
191, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 18hdmap14lem2a 37661 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → ∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
20 simp3 1133 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)))
21 eqid 2760 . . . . . . . . 9 (+g𝑈) = (+g𝑈)
22 hdmap14lem12.o . . . . . . . . 9 0 = (0g𝑈)
23 eqid 2760 . . . . . . . . 9 (LSpan‘𝑈) = (LSpan‘𝑈)
24 eqid 2760 . . . . . . . . 9 (+g𝐶) = (+g𝐶)
25 simp11 1246 . . . . . . . . . 10 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝜑)
2625, 13syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
27 hdmap14lem12.x . . . . . . . . . 10 (𝜑𝑋 ∈ (𝑉 ∖ { 0 }))
2825, 27syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑋 ∈ (𝑉 ∖ { 0 }))
29 simp13 1248 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑦 ∈ (𝑉 ∖ { 0 }))
3025, 17syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐹𝐵)
31 hdmap14lem12.g . . . . . . . . . 10 (𝜑𝐺𝐴)
3225, 31syl 17 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺𝐴)
33 simp2 1132 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝑔𝐴)
34 simp12 1247 . . . . . . . . 9 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
351, 2, 3, 21, 4, 22, 23, 5, 6, 7, 24, 8, 10, 11, 12, 26, 28, 29, 30, 32, 33, 34, 20hdmap14lem11 37672 . . . . . . . 8 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → 𝐺 = 𝑔)
3635oveq1d 6828 . . . . . . 7 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝐺 (𝑆𝑦)) = (𝑔 (𝑆𝑦)))
3720, 36eqtr4d 2797 . . . . . 6 (((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) ∧ 𝑔𝐴 ∧ (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
3837rexlimdv3a 3171 . . . . 5 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (∃𝑔𝐴 (𝑆‘(𝐹 · 𝑦)) = (𝑔 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
3919, 38mpd 15 . . . 4 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ∧ 𝑦 ∈ (𝑉 ∖ { 0 })) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
40393expia 1115 . . 3 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → (𝑦 ∈ (𝑉 ∖ { 0 }) → (𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
4140ralrimiv 3103 . 2 ((𝜑 ∧ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))) → ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)))
42 oveq2 6821 . . . . . . 7 (𝑦 = 𝑋 → (𝐹 · 𝑦) = (𝐹 · 𝑋))
4342fveq2d 6356 . . . . . 6 (𝑦 = 𝑋 → (𝑆‘(𝐹 · 𝑦)) = (𝑆‘(𝐹 · 𝑋)))
44 fveq2 6352 . . . . . . 7 (𝑦 = 𝑋 → (𝑆𝑦) = (𝑆𝑋))
4544oveq2d 6829 . . . . . 6 (𝑦 = 𝑋 → (𝐺 (𝑆𝑦)) = (𝐺 (𝑆𝑋)))
4643, 45eqeq12d 2775 . . . . 5 (𝑦 = 𝑋 → ((𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) ↔ (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4746rspcv 3445 . . . 4 (𝑋 ∈ (𝑉 ∖ { 0 }) → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4827, 47syl 17 . . 3 (𝜑 → (∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦)) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋))))
4948imp 444 . 2 ((𝜑 ∧ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))) → (𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)))
5041, 49impbida 913 1 (𝜑 → ((𝑆‘(𝐹 · 𝑋)) = (𝐺 (𝑆𝑋)) ↔ ∀𝑦 ∈ (𝑉 ∖ { 0 })(𝑆‘(𝐹 · 𝑦)) = (𝐺 (𝑆𝑦))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wral 3050  wrex 3051  cdif 3712  {csn 4321  cfv 6049  (class class class)co 6813  Basecbs 16059  +gcplusg 16143  Scalarcsca 16146   ·𝑠 cvsca 16147  0gc0g 16302  LSpanclspn 19173  HLchlt 35140  LHypclh 35773  DVecHcdvh 36869  LCDualclcd 37377  HDMapchdma 37584
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205  ax-riotaBAD 34742
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-fal 1638  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-ot 4330  df-uni 4589  df-int 4628  df-iun 4674  df-iin 4675  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-of 7062  df-om 7231  df-1st 7333  df-2nd 7334  df-tpos 7521  df-undef 7568  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-map 8025  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-2 11271  df-3 11272  df-4 11273  df-5 11274  df-6 11275  df-n0 11485  df-z 11570  df-uz 11880  df-fz 12520  df-struct 16061  df-ndx 16062  df-slot 16063  df-base 16065  df-sets 16066  df-ress 16067  df-plusg 16156  df-mulr 16157  df-sca 16159  df-vsca 16160  df-0g 16304  df-mre 16448  df-mrc 16449  df-acs 16451  df-preset 17129  df-poset 17147  df-plt 17159  df-lub 17175  df-glb 17176  df-join 17177  df-meet 17178  df-p0 17240  df-p1 17241  df-lat 17247  df-clat 17309  df-mgm 17443  df-sgrp 17485  df-mnd 17496  df-submnd 17537  df-grp 17626  df-minusg 17627  df-sbg 17628  df-subg 17792  df-cntz 17950  df-oppg 17976  df-lsm 18251  df-cmn 18395  df-abl 18396  df-mgp 18690  df-ur 18702  df-ring 18749  df-oppr 18823  df-dvdsr 18841  df-unit 18842  df-invr 18872  df-dvr 18883  df-drng 18951  df-lmod 19067  df-lss 19135  df-lsp 19174  df-lvec 19305  df-lsatoms 34766  df-lshyp 34767  df-lcv 34809  df-lfl 34848  df-lkr 34876  df-ldual 34914  df-oposet 34966  df-ol 34968  df-oml 34969  df-covers 35056  df-ats 35057  df-atl 35088  df-cvlat 35112  df-hlat 35141  df-llines 35287  df-lplanes 35288  df-lvols 35289  df-lines 35290  df-psubsp 35292  df-pmap 35293  df-padd 35585  df-lhyp 35777  df-laut 35778  df-ldil 35893  df-ltrn 35894  df-trl 35949  df-tgrp 36533  df-tendo 36545  df-edring 36547  df-dveca 36793  df-disoa 36820  df-dvech 36870  df-dib 36930  df-dic 36964  df-dih 37020  df-doch 37139  df-djh 37186  df-lcdual 37378  df-mapd 37416  df-hvmap 37548  df-hdmap1 37585  df-hdmap 37586
This theorem is referenced by:  hdmap14lem13  37674
  Copyright terms: Public domain W3C validator