![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hcau | Structured version Visualization version GIF version |
Description: Member of the set of Cauchy sequences on a Hilbert space. Definition for Cauchy sequence in [Beran] p. 96. (Contributed by NM, 16-Aug-1999.) (Revised by Mario Carneiro, 14-May-2014.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hcau | ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fveq1 6347 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑦) = (𝐹‘𝑦)) | |
2 | fveq1 6347 | . . . . . . . 8 ⊢ (𝑓 = 𝐹 → (𝑓‘𝑧) = (𝐹‘𝑧)) | |
3 | 1, 2 | oveq12d 6827 | . . . . . . 7 ⊢ (𝑓 = 𝐹 → ((𝑓‘𝑦) −ℎ (𝑓‘𝑧)) = ((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) |
4 | 3 | fveq2d 6352 | . . . . . 6 ⊢ (𝑓 = 𝐹 → (normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) = (normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧)))) |
5 | 4 | breq1d 4810 | . . . . 5 ⊢ (𝑓 = 𝐹 → ((normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ (normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
6 | 5 | rexralbidv 3192 | . . . 4 ⊢ (𝑓 = 𝐹 → (∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
7 | 6 | ralbidv 3120 | . . 3 ⊢ (𝑓 = 𝐹 → (∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥 ↔ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
8 | df-hcau 28135 | . . 3 ⊢ Cauchy = {𝑓 ∈ ( ℋ ↑𝑚 ℕ) ∣ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝑓‘𝑦) −ℎ (𝑓‘𝑧))) < 𝑥} | |
9 | 7, 8 | elrab2 3503 | . 2 ⊢ (𝐹 ∈ Cauchy ↔ (𝐹 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
10 | ax-hilex 28161 | . . . 4 ⊢ ℋ ∈ V | |
11 | nnex 11214 | . . . 4 ⊢ ℕ ∈ V | |
12 | 10, 11 | elmap 8048 | . . 3 ⊢ (𝐹 ∈ ( ℋ ↑𝑚 ℕ) ↔ 𝐹:ℕ⟶ ℋ) |
13 | 12 | anbi1i 733 | . 2 ⊢ ((𝐹 ∈ ( ℋ ↑𝑚 ℕ) ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥) ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
14 | 9, 13 | bitri 264 | 1 ⊢ (𝐹 ∈ Cauchy ↔ (𝐹:ℕ⟶ ℋ ∧ ∀𝑥 ∈ ℝ+ ∃𝑦 ∈ ℕ ∀𝑧 ∈ (ℤ≥‘𝑦)(normℎ‘((𝐹‘𝑦) −ℎ (𝐹‘𝑧))) < 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 196 ∧ wa 383 = wceq 1628 ∈ wcel 2135 ∀wral 3046 ∃wrex 3047 class class class wbr 4800 ⟶wf 6041 ‘cfv 6045 (class class class)co 6809 ↑𝑚 cmap 8019 < clt 10262 ℕcn 11208 ℤ≥cuz 11875 ℝ+crp 12021 ℋchil 28081 normℎcno 28085 −ℎ cmv 28087 Cauchyccau 28088 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-i2m1 10192 ax-1ne0 10193 ax-rrecex 10196 ax-cnre 10197 ax-hilex 28161 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-map 8021 df-nn 11209 df-hcau 28135 |
This theorem is referenced by: hcauseq 28347 hcaucvg 28348 seq1hcau 28349 chscllem2 28802 |
Copyright terms: Public domain | W3C validator |