Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem5 Structured version   Visualization version   GIF version

Theorem hbtlem5 38224
Description: The leading ideal function is strictly monotone. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem3.r (𝜑𝑅 ∈ Ring)
hbtlem3.i (𝜑𝐼𝑈)
hbtlem3.j (𝜑𝐽𝑈)
hbtlem3.ij (𝜑𝐼𝐽)
hbtlem5.e (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
Assertion
Ref Expression
hbtlem5 (𝜑𝐼 = 𝐽)
Distinct variable groups:   𝑥,𝐼   𝑥,𝐽   𝑥,𝑆
Allowed substitution hints:   𝜑(𝑥)   𝑃(𝑥)   𝑅(𝑥)   𝑈(𝑥)

Proof of Theorem hbtlem5
Dummy variables 𝑎 𝑏 𝑐 𝑑 𝑒 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem3.ij . 2 (𝜑𝐼𝐽)
2 hbtlem3.j . . . . . . . . 9 (𝜑𝐽𝑈)
3 eqid 2771 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
4 hbtlem.u . . . . . . . . . 10 𝑈 = (LIdeal‘𝑃)
53, 4lidlss 19425 . . . . . . . . 9 (𝐽𝑈𝐽 ⊆ (Base‘𝑃))
62, 5syl 17 . . . . . . . 8 (𝜑𝐽 ⊆ (Base‘𝑃))
76sselda 3752 . . . . . . 7 ((𝜑𝑎𝐽) → 𝑎 ∈ (Base‘𝑃))
8 eqid 2771 . . . . . . . 8 ( deg1𝑅) = ( deg1𝑅)
9 hbtlem.p . . . . . . . 8 𝑃 = (Poly1𝑅)
108, 9, 3deg1cl 24063 . . . . . . 7 (𝑎 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
117, 10syl 17 . . . . . 6 ((𝜑𝑎𝐽) → (( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}))
12 elun 3904 . . . . . . 7 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) ↔ ((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}))
13 nnssnn0 11497 . . . . . . . . 9 ℕ ⊆ ℕ0
14 nn0re 11503 . . . . . . . . . 10 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → (( deg1𝑅)‘𝑎) ∈ ℝ)
15 arch 11491 . . . . . . . . . 10 ((( deg1𝑅)‘𝑎) ∈ ℝ → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
1614, 15syl 17 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏)
17 ssrexv 3816 . . . . . . . . 9 (ℕ ⊆ ℕ0 → (∃𝑏 ∈ ℕ (( deg1𝑅)‘𝑎) < 𝑏 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏))
1813, 16, 17mpsyl 68 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ ℕ0 → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
19 elsni 4333 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) ∈ {-∞} → (( deg1𝑅)‘𝑎) = -∞)
20 0nn0 11509 . . . . . . . . . . 11 0 ∈ ℕ0
21 mnflt0 12164 . . . . . . . . . . 11 -∞ < 0
22 breq2 4790 . . . . . . . . . . . 12 (𝑏 = 0 → (-∞ < 𝑏 ↔ -∞ < 0))
2322rspcev 3460 . . . . . . . . . . 11 ((0 ∈ ℕ0 ∧ -∞ < 0) → ∃𝑏 ∈ ℕ0 -∞ < 𝑏)
2420, 21, 23mp2an 672 . . . . . . . . . 10 𝑏 ∈ ℕ0 -∞ < 𝑏
25 breq1 4789 . . . . . . . . . . 11 ((( deg1𝑅)‘𝑎) = -∞ → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ -∞ < 𝑏))
2625rexbidv 3200 . . . . . . . . . 10 ((( deg1𝑅)‘𝑎) = -∞ → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏 ↔ ∃𝑏 ∈ ℕ0 -∞ < 𝑏))
2724, 26mpbiri 248 . . . . . . . . 9 ((( deg1𝑅)‘𝑎) = -∞ → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2819, 27syl 17 . . . . . . . 8 ((( deg1𝑅)‘𝑎) ∈ {-∞} → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
2918, 28jaoi 846 . . . . . . 7 (((( deg1𝑅)‘𝑎) ∈ ℕ0 ∨ (( deg1𝑅)‘𝑎) ∈ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3012, 29sylbi 207 . . . . . 6 ((( deg1𝑅)‘𝑎) ∈ (ℕ0 ∪ {-∞}) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
3111, 30syl 17 . . . . 5 ((𝜑𝑎𝐽) → ∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏)
32 breq2 4790 . . . . . . . . . . . . 13 (𝑐 = 0 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 0))
3332imbi1d 330 . . . . . . . . . . . 12 (𝑐 = 0 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3433ralbidv 3135 . . . . . . . . . . 11 (𝑐 = 0 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼)))
3534imbi2d 329 . . . . . . . . . 10 (𝑐 = 0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))))
36 breq2 4790 . . . . . . . . . . . . 13 (𝑐 = 𝑏 → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < 𝑏))
3736imbi1d 330 . . . . . . . . . . . 12 (𝑐 = 𝑏 → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3837ralbidv 3135 . . . . . . . . . . 11 (𝑐 = 𝑏 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
3938imbi2d 329 . . . . . . . . . 10 (𝑐 = 𝑏 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
40 breq2 4790 . . . . . . . . . . . . . 14 (𝑐 = (𝑏 + 1) → ((( deg1𝑅)‘𝑎) < 𝑐 ↔ (( deg1𝑅)‘𝑎) < (𝑏 + 1)))
4140imbi1d 330 . . . . . . . . . . . . 13 (𝑐 = (𝑏 + 1) → (((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
4241ralbidv 3135 . . . . . . . . . . . 12 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼)))
43 fveq2 6332 . . . . . . . . . . . . . . 15 (𝑎 = 𝑑 → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘𝑑))
4443breq1d 4796 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → ((( deg1𝑅)‘𝑎) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) < (𝑏 + 1)))
45 eleq1 2838 . . . . . . . . . . . . . 14 (𝑎 = 𝑑 → (𝑎𝐼𝑑𝐼))
4644, 45imbi12d 333 . . . . . . . . . . . . 13 (𝑎 = 𝑑 → (((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4746cbvralv 3320 . . . . . . . . . . . 12 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < (𝑏 + 1) → 𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
4842, 47syl6bb 276 . . . . . . . . . . 11 (𝑐 = (𝑏 + 1) → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼) ↔ ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼)))
4948imbi2d 329 . . . . . . . . . 10 (𝑐 = (𝑏 + 1) → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑐𝑎𝐼)) ↔ (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
50 hbtlem3.r . . . . . . . . . . . . . 14 (𝜑𝑅 ∈ Ring)
5150adantr 466 . . . . . . . . . . . . 13 ((𝜑𝑎𝐽) → 𝑅 ∈ Ring)
52 eqid 2771 . . . . . . . . . . . . . 14 (0g𝑃) = (0g𝑃)
538, 9, 52, 3deg1lt0 24071 . . . . . . . . . . . . 13 ((𝑅 ∈ Ring ∧ 𝑎 ∈ (Base‘𝑃)) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
5451, 7, 53syl2anc 573 . . . . . . . . . . . 12 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 ↔ 𝑎 = (0g𝑃)))
559ply1ring 19833 . . . . . . . . . . . . . . . 16 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
5650, 55syl 17 . . . . . . . . . . . . . . 15 (𝜑𝑃 ∈ Ring)
57 hbtlem3.i . . . . . . . . . . . . . . 15 (𝜑𝐼𝑈)
584, 52lidl0cl 19427 . . . . . . . . . . . . . . 15 ((𝑃 ∈ Ring ∧ 𝐼𝑈) → (0g𝑃) ∈ 𝐼)
5956, 57, 58syl2anc 573 . . . . . . . . . . . . . 14 (𝜑 → (0g𝑃) ∈ 𝐼)
60 eleq1a 2845 . . . . . . . . . . . . . 14 ((0g𝑃) ∈ 𝐼 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6159, 60syl 17 . . . . . . . . . . . . 13 (𝜑 → (𝑎 = (0g𝑃) → 𝑎𝐼))
6261adantr 466 . . . . . . . . . . . 12 ((𝜑𝑎𝐽) → (𝑎 = (0g𝑃) → 𝑎𝐼))
6354, 62sylbid 230 . . . . . . . . . . 11 ((𝜑𝑎𝐽) → ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6463ralrimiva 3115 . . . . . . . . . 10 (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 0 → 𝑎𝐼))
6563ad2ant2 1128 . . . . . . . . . . . . . . . . 17 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐽 ⊆ (Base‘𝑃))
6665sselda 3752 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑑 ∈ (Base‘𝑃))
678, 9, 3deg1cl 24063 . . . . . . . . . . . . . . . 16 (𝑑 ∈ (Base‘𝑃) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
6866, 67syl 17 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → (( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}))
69 simpl1 1227 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℕ0)
7069nn0zd 11682 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → 𝑏 ∈ ℤ)
71 degltp1le 24053 . . . . . . . . . . . . . . 15 (((( deg1𝑅)‘𝑑) ∈ (ℕ0 ∪ {-∞}) ∧ 𝑏 ∈ ℤ) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
7268, 70, 71syl2anc 573 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
73 hbtlem5.e . . . . . . . . . . . . . . . . . . . . 21 (𝜑 → ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥))
74 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑏 → ((𝑆𝐽)‘𝑥) = ((𝑆𝐽)‘𝑏))
75 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑥 = 𝑏 → ((𝑆𝐼)‘𝑥) = ((𝑆𝐼)‘𝑏))
7674, 75sseq12d 3783 . . . . . . . . . . . . . . . . . . . . . 22 (𝑥 = 𝑏 → (((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥) ↔ ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏)))
7776rspcva 3458 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0 ∧ ∀𝑥 ∈ ℕ0 ((𝑆𝐽)‘𝑥) ⊆ ((𝑆𝐼)‘𝑥)) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7873, 77sylan2 580 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) ⊆ ((𝑆𝐼)‘𝑏))
7950adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝑅 ∈ Ring)
802adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝐽𝑈)
81 simpl 468 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝑏 ∈ ℕ0)
82 hbtlem.s . . . . . . . . . . . . . . . . . . . . . 22 𝑆 = (ldgIdlSeq‘𝑅)
839, 4, 82, 8hbtlem1 38219 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐽𝑈𝑏 ∈ ℕ0) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8479, 80, 81, 83syl3anc 1476 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐽)‘𝑏) = {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8557adantl 467 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑) → 𝐼𝑈)
869, 4, 82, 8hbtlem1 38219 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑏 ∈ ℕ0) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8779, 85, 81, 86syl3anc 1476 . . . . . . . . . . . . . . . . . . . 20 ((𝑏 ∈ ℕ0𝜑) → ((𝑆𝐼)‘𝑏) = {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
8878, 84, 873sstr3d 3796 . . . . . . . . . . . . . . . . . . 19 ((𝑏 ∈ ℕ0𝜑) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
89883adant3 1126 . . . . . . . . . . . . . . . . . 18 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
9089adantr 466 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ⊆ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
91 simpl 468 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → 𝑑𝐽)
92 simpr 471 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
93 eqidd 2772 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))
94 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑑 → (( deg1𝑅)‘𝑒) = (( deg1𝑅)‘𝑑))
9594breq1d 4796 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → ((( deg1𝑅)‘𝑒) ≤ 𝑏 ↔ (( deg1𝑅)‘𝑑) ≤ 𝑏))
96 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑒 = 𝑑 → (coe1𝑒) = (coe1𝑑))
9796fveq1d 6334 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑒 = 𝑑 → ((coe1𝑒)‘𝑏) = ((coe1𝑑)‘𝑏))
9897eqeq2d 2781 . . . . . . . . . . . . . . . . . . . . . 22 (𝑒 = 𝑑 → (((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏)))
9995, 98anbi12d 616 . . . . . . . . . . . . . . . . . . . . 21 (𝑒 = 𝑑 → (((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))))
10099rspcev 3460 . . . . . . . . . . . . . . . . . . . 20 ((𝑑𝐽 ∧ ((( deg1𝑅)‘𝑑) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑑)‘𝑏))) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
10191, 92, 93, 100syl12anc 1474 . . . . . . . . . . . . . . . . . . 19 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
102 fvex 6342 . . . . . . . . . . . . . . . . . . . 20 ((coe1𝑑)‘𝑏) ∈ V
103 eqeq1 2775 . . . . . . . . . . . . . . . . . . . . . 22 (𝑐 = ((coe1𝑑)‘𝑏) → (𝑐 = ((coe1𝑒)‘𝑏) ↔ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
104103anbi2d 614 . . . . . . . . . . . . . . . . . . . . 21 (𝑐 = ((coe1𝑑)‘𝑏) → (((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
105104rexbidv 3200 . . . . . . . . . . . . . . . . . . . 20 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
106102, 105elab 3501 . . . . . . . . . . . . . . . . . . 19 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
107101, 106sylibr 224 . . . . . . . . . . . . . . . . . 18 ((𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
108107adantl 467 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐽 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
10990, 108sseldd 3753 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → ((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))})
110104rexbidv 3200 . . . . . . . . . . . . . . . . . 18 (𝑐 = ((coe1𝑑)‘𝑏) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏)) ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))))
111102, 110elab 3501 . . . . . . . . . . . . . . . . 17 (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} ↔ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))
112 simpll2 1256 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝜑)
113112, 56syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Ring)
114 ringgrp 18760 . . . . . . . . . . . . . . . . . . . . 21 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
115113, 114syl 17 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑃 ∈ Grp)
116112, 6syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽 ⊆ (Base‘𝑃))
117 simplrl 762 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐽)
118116, 117sseldd 3753 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑 ∈ (Base‘𝑃))
1193, 4lidlss 19425 . . . . . . . . . . . . . . . . . . . . . . 23 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
12057, 119syl 17 . . . . . . . . . . . . . . . . . . . . . 22 (𝜑𝐼 ⊆ (Base‘𝑃))
121112, 120syl 17 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼 ⊆ (Base‘𝑃))
122 simprl 754 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐼)
123121, 122sseldd 3753 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒 ∈ (Base‘𝑃))
124 eqid 2771 . . . . . . . . . . . . . . . . . . . . 21 (+g𝑃) = (+g𝑃)
125 eqid 2771 . . . . . . . . . . . . . . . . . . . . 21 (-g𝑃) = (-g𝑃)
1263, 124, 125grpnpcan 17715 . . . . . . . . . . . . . . . . . . . 20 ((𝑃 ∈ Grp ∧ 𝑑 ∈ (Base‘𝑃) ∧ 𝑒 ∈ (Base‘𝑃)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
127115, 118, 123, 126syl3anc 1476 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) = 𝑑)
128573ad2ant2 1128 . . . . . . . . . . . . . . . . . . . . 21 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝑈)
129128ad2antrr 705 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝑈)
130 simpll1 1254 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑏 ∈ ℕ0)
131112, 50syl 17 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑅 ∈ Ring)
132 simplrr 763 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑑) ≤ 𝑏)
133 simprrl 766 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘𝑒) ≤ 𝑏)
134 eqid 2771 . . . . . . . . . . . . . . . . . . . . . 22 (coe1𝑑) = (coe1𝑑)
135 eqid 2771 . . . . . . . . . . . . . . . . . . . . . 22 (coe1𝑒) = (coe1𝑒)
136 simprrr 767 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏))
1378, 9, 3, 125, 130, 131, 118, 132, 123, 133, 134, 135, 136deg1sublt 24090 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏)
138112, 2syl 17 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐽𝑈)
13913ad2ant2 1128 . . . . . . . . . . . . . . . . . . . . . . . . 25 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → 𝐼𝐽)
140139ad2antrr 705 . . . . . . . . . . . . . . . . . . . . . . . 24 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝐼𝐽)
141140, 122sseldd 3753 . . . . . . . . . . . . . . . . . . . . . . 23 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑒𝐽)
1424, 125lidlsubcl 19431 . . . . . . . . . . . . . . . . . . . . . . 23 (((𝑃 ∈ Ring ∧ 𝐽𝑈) ∧ (𝑑𝐽𝑒𝐽)) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
143113, 138, 117, 141, 142syl22anc 1477 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐽)
144 simpll3 1258 . . . . . . . . . . . . . . . . . . . . . 22 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
145 fveq2 6332 . . . . . . . . . . . . . . . . . . . . . . . . 25 (𝑎 = (𝑑(-g𝑃)𝑒) → (( deg1𝑅)‘𝑎) = (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)))
146145breq1d 4796 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑑(-g𝑃)𝑒) → ((( deg1𝑅)‘𝑎) < 𝑏 ↔ (( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏))
147 eleq1 2838 . . . . . . . . . . . . . . . . . . . . . . . 24 (𝑎 = (𝑑(-g𝑃)𝑒) → (𝑎𝐼 ↔ (𝑑(-g𝑃)𝑒) ∈ 𝐼))
148146, 147imbi12d 333 . . . . . . . . . . . . . . . . . . . . . . 23 (𝑎 = (𝑑(-g𝑃)𝑒) → (((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) ↔ ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼)))
149148rspcva 3458 . . . . . . . . . . . . . . . . . . . . . 22 (((𝑑(-g𝑃)𝑒) ∈ 𝐽 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
150143, 144, 149syl2anc 573 . . . . . . . . . . . . . . . . . . . . 21 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((( deg1𝑅)‘(𝑑(-g𝑃)𝑒)) < 𝑏 → (𝑑(-g𝑃)𝑒) ∈ 𝐼))
151137, 150mpd 15 . . . . . . . . . . . . . . . . . . . 20 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → (𝑑(-g𝑃)𝑒) ∈ 𝐼)
1524, 124lidlacl 19428 . . . . . . . . . . . . . . . . . . . 20 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ ((𝑑(-g𝑃)𝑒) ∈ 𝐼𝑒𝐼)) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
153113, 129, 151, 122, 152syl22anc 1477 . . . . . . . . . . . . . . . . . . 19 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → ((𝑑(-g𝑃)𝑒)(+g𝑃)𝑒) ∈ 𝐼)
154127, 153eqeltrrd 2851 . . . . . . . . . . . . . . . . . 18 ((((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) ∧ (𝑒𝐼 ∧ ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)))) → 𝑑𝐼)
155154rexlimdvaa 3180 . . . . . . . . . . . . . . . . 17 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏 ∧ ((coe1𝑑)‘𝑏) = ((coe1𝑒)‘𝑏)) → 𝑑𝐼))
156111, 155syl5bi 232 . . . . . . . . . . . . . . . 16 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → (((coe1𝑑)‘𝑏) ∈ {𝑐 ∣ ∃𝑒𝐼 ((( deg1𝑅)‘𝑒) ≤ 𝑏𝑐 = ((coe1𝑒)‘𝑏))} → 𝑑𝐼))
157109, 156mpd 15 . . . . . . . . . . . . . . 15 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ (𝑑𝐽 ∧ (( deg1𝑅)‘𝑑) ≤ 𝑏)) → 𝑑𝐼)
158157expr 444 . . . . . . . . . . . . . 14 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) ≤ 𝑏𝑑𝐼))
15972, 158sylbid 230 . . . . . . . . . . . . 13 (((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) ∧ 𝑑𝐽) → ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
160159ralrimiva 3115 . . . . . . . . . . . 12 ((𝑏 ∈ ℕ0𝜑 ∧ ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))
1611603exp 1112 . . . . . . . . . . 11 (𝑏 ∈ ℕ0 → (𝜑 → (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
162161a2d 29 . . . . . . . . . 10 (𝑏 ∈ ℕ0 → ((𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)) → (𝜑 → ∀𝑑𝐽 ((( deg1𝑅)‘𝑑) < (𝑏 + 1) → 𝑑𝐼))))
16335, 39, 49, 39, 64, 162nn0ind 11674 . . . . . . . . 9 (𝑏 ∈ ℕ0 → (𝜑 → ∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
164 rsp 3078 . . . . . . . . 9 (∀𝑎𝐽 ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼) → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
165163, 164syl6com 37 . . . . . . . 8 (𝜑 → (𝑏 ∈ ℕ0 → (𝑎𝐽 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
166165com23 86 . . . . . . 7 (𝜑 → (𝑎𝐽 → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))))
167166imp 393 . . . . . 6 ((𝜑𝑎𝐽) → (𝑏 ∈ ℕ0 → ((( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼)))
168167rexlimdv 3178 . . . . 5 ((𝜑𝑎𝐽) → (∃𝑏 ∈ ℕ0 (( deg1𝑅)‘𝑎) < 𝑏𝑎𝐼))
16931, 168mpd 15 . . . 4 ((𝜑𝑎𝐽) → 𝑎𝐼)
170169ex 397 . . 3 (𝜑 → (𝑎𝐽𝑎𝐼))
171170ssrdv 3758 . 2 (𝜑𝐽𝐼)
1721, 171eqssd 3769 1 (𝜑𝐼 = 𝐽)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 382  wo 836  w3a 1071   = wceq 1631  wcel 2145  {cab 2757  wral 3061  wrex 3062  cun 3721  wss 3723  {csn 4316   class class class wbr 4786  cfv 6031  (class class class)co 6793  cr 10137  0cc0 10138  1c1 10139   + caddc 10141  -∞cmnf 10274   < clt 10276  cle 10277  cn 11222  0cn0 11494  cz 11579  Basecbs 16064  +gcplusg 16149  0gc0g 16308  Grpcgrp 17630  -gcsg 17632  Ringcrg 18755  LIdealclidl 19385  Poly1cpl1 19762  coe1cco1 19763   deg1 cdg1 24034  ldgIdlSeqcldgis 38217
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-ofr 7045  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-tpos 7504  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-sup 8504  df-oi 8571  df-card 8965  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-0g 16310  df-gsum 16311  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-mhm 17543  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-mulg 17749  df-subg 17799  df-ghm 17866  df-cntz 17957  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-cring 18758  df-oppr 18831  df-dvdsr 18849  df-unit 18850  df-invr 18880  df-subrg 18988  df-lmod 19075  df-lss 19143  df-sra 19387  df-rgmod 19388  df-lidl 19389  df-rlreg 19498  df-psr 19571  df-mpl 19573  df-opsr 19575  df-psr1 19765  df-ply1 19767  df-coe1 19768  df-cnfld 19962  df-mdeg 24035  df-deg1 24036  df-ldgis 38218
This theorem is referenced by:  hbt  38226
  Copyright terms: Public domain W3C validator