Mathbox for Stefan O'Rear < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbtlem4 Structured version   Visualization version   GIF version

Theorem hbtlem4 38215
 Description: The leading ideal function goes to increasing sequences. (Contributed by Stefan O'Rear, 1-Apr-2015.)
Hypotheses
Ref Expression
hbtlem.p 𝑃 = (Poly1𝑅)
hbtlem.u 𝑈 = (LIdeal‘𝑃)
hbtlem.s 𝑆 = (ldgIdlSeq‘𝑅)
hbtlem4.r (𝜑𝑅 ∈ Ring)
hbtlem4.i (𝜑𝐼𝑈)
hbtlem4.x (𝜑𝑋 ∈ ℕ0)
hbtlem4.y (𝜑𝑌 ∈ ℕ0)
hbtlem4.xy (𝜑𝑋𝑌)
Assertion
Ref Expression
hbtlem4 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))

Proof of Theorem hbtlem4
Dummy variables 𝑎 𝑐 𝑏 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hbtlem4.r . . . . . . . . . 10 (𝜑𝑅 ∈ Ring)
21ad2antrr 697 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑅 ∈ Ring)
3 hbtlem.p . . . . . . . . . 10 𝑃 = (Poly1𝑅)
43ply1ring 19832 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
52, 4syl 17 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑃 ∈ Ring)
6 hbtlem4.i . . . . . . . . 9 (𝜑𝐼𝑈)
76ad2antrr 697 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼𝑈)
8 eqid 2770 . . . . . . . . . . 11 (mulGrp‘𝑃) = (mulGrp‘𝑃)
98ringmgp 18760 . . . . . . . . . 10 (𝑃 ∈ Ring → (mulGrp‘𝑃) ∈ Mnd)
105, 9syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (mulGrp‘𝑃) ∈ Mnd)
11 hbtlem4.x . . . . . . . . . . 11 (𝜑𝑋 ∈ ℕ0)
1211ad2antrr 697 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℕ0)
13 hbtlem4.y . . . . . . . . . . 11 (𝜑𝑌 ∈ ℕ0)
1413ad2antrr 697 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℕ0)
15 hbtlem4.xy . . . . . . . . . . 11 (𝜑𝑋𝑌)
1615ad2antrr 697 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋𝑌)
17 nn0sub2 11639 . . . . . . . . . 10 ((𝑋 ∈ ℕ0𝑌 ∈ ℕ0𝑋𝑌) → (𝑌𝑋) ∈ ℕ0)
1812, 14, 16, 17syl3anc 1475 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑌𝑋) ∈ ℕ0)
19 eqid 2770 . . . . . . . . . . 11 (var1𝑅) = (var1𝑅)
20 eqid 2770 . . . . . . . . . . 11 (Base‘𝑃) = (Base‘𝑃)
2119, 3, 20vr1cl 19801 . . . . . . . . . 10 (𝑅 ∈ Ring → (var1𝑅) ∈ (Base‘𝑃))
222, 21syl 17 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (var1𝑅) ∈ (Base‘𝑃))
238, 20mgpbas 18702 . . . . . . . . . 10 (Base‘𝑃) = (Base‘(mulGrp‘𝑃))
24 eqid 2770 . . . . . . . . . 10 (.g‘(mulGrp‘𝑃)) = (.g‘(mulGrp‘𝑃))
2523, 24mulgnn0cl 17765 . . . . . . . . 9 (((mulGrp‘𝑃) ∈ Mnd ∧ (𝑌𝑋) ∈ ℕ0 ∧ (var1𝑅) ∈ (Base‘𝑃)) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
2610, 18, 22, 25syl3anc 1475 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃))
27 simplr 744 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐𝐼)
28 hbtlem.u . . . . . . . . 9 𝑈 = (LIdeal‘𝑃)
29 eqid 2770 . . . . . . . . 9 (.r𝑃) = (.r𝑃)
3028, 20, 29lidlmcl 19431 . . . . . . . 8 (((𝑃 ∈ Ring ∧ 𝐼𝑈) ∧ (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅)) ∈ (Base‘𝑃) ∧ 𝑐𝐼)) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
315, 7, 26, 27, 30syl22anc 1476 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼)
32 eqid 2770 . . . . . . . . 9 ( deg1𝑅) = ( deg1𝑅)
3320, 28lidlss 19424 . . . . . . . . . . 11 (𝐼𝑈𝐼 ⊆ (Base‘𝑃))
347, 33syl 17 . . . . . . . . . 10 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝐼 ⊆ (Base‘𝑃))
3534, 27sseldd 3751 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑐 ∈ (Base‘𝑃))
3632, 3, 19, 8, 24deg1pwle 24098 . . . . . . . . . 10 ((𝑅 ∈ Ring ∧ (𝑌𝑋) ∈ ℕ0) → (( deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
372, 18, 36syl2anc 565 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))) ≤ (𝑌𝑋))
38 simpr 471 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘𝑐) ≤ 𝑋)
393, 32, 2, 20, 29, 26, 35, 18, 12, 37, 38deg1mulle2 24088 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ ((𝑌𝑋) + 𝑋))
4014nn0cnd 11554 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑌 ∈ ℂ)
4112nn0cnd 11554 . . . . . . . . 9 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → 𝑋 ∈ ℂ)
4240, 41npcand 10597 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((𝑌𝑋) + 𝑋) = 𝑌)
4339, 42breqtrd 4810 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌)
44 eqid 2770 . . . . . . . . 9 (0g𝑅) = (0g𝑅)
4544, 3, 19, 8, 24, 20, 29, 2, 35, 18, 12coe1pwmulfv 19864 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1𝑐)‘𝑋))
4642fveq2d 6336 . . . . . . . 8 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘((𝑌𝑋) + 𝑋)) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
4745, 46eqtr3d 2806 . . . . . . 7 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
48 fveq2 6332 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (( deg1𝑅)‘𝑏) = (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
4948breq1d 4794 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((( deg1𝑅)‘𝑏) ≤ 𝑌 ↔ (( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌))
50 fveq2 6332 . . . . . . . . . . 11 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (coe1𝑏) = (coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)))
5150fveq1d 6334 . . . . . . . . . 10 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → ((coe1𝑏)‘𝑌) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))
5251eqeq2d 2780 . . . . . . . . 9 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌)))
5349, 52anbi12d 608 . . . . . . . 8 (𝑏 = (((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) → (((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)) ↔ ((( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))))
5453rspcev 3458 . . . . . . 7 (((((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐) ∈ 𝐼 ∧ ((( deg1𝑅)‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐)) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1‘(((𝑌𝑋)(.g‘(mulGrp‘𝑃))(var1𝑅))(.r𝑃)𝑐))‘𝑌))) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5531, 43, 47, 54syl12anc 1473 . . . . . 6 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
56 eqeq1 2774 . . . . . . . 8 (𝑎 = ((coe1𝑐)‘𝑋) → (𝑎 = ((coe1𝑏)‘𝑌) ↔ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌)))
5756anbi2d 606 . . . . . . 7 (𝑎 = ((coe1𝑐)‘𝑋) → (((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5857rexbidv 3199 . . . . . 6 (𝑎 = ((coe1𝑐)‘𝑋) → (∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌)) ↔ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌 ∧ ((coe1𝑐)‘𝑋) = ((coe1𝑏)‘𝑌))))
5955, 58syl5ibrcom 237 . . . . 5 (((𝜑𝑐𝐼) ∧ (( deg1𝑅)‘𝑐) ≤ 𝑋) → (𝑎 = ((coe1𝑐)‘𝑋) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6059expimpd 441 . . . 4 ((𝜑𝑐𝐼) → (((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6160rexlimdva 3178 . . 3 (𝜑 → (∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋)) → ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))))
6261ss2abdv 3822 . 2 (𝜑 → {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))} ⊆ {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
63 hbtlem.s . . . 4 𝑆 = (ldgIdlSeq‘𝑅)
643, 28, 63, 32hbtlem1 38212 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑋 ∈ ℕ0) → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
651, 6, 11, 64syl3anc 1475 . 2 (𝜑 → ((𝑆𝐼)‘𝑋) = {𝑎 ∣ ∃𝑐𝐼 ((( deg1𝑅)‘𝑐) ≤ 𝑋𝑎 = ((coe1𝑐)‘𝑋))})
663, 28, 63, 32hbtlem1 38212 . . 3 ((𝑅 ∈ Ring ∧ 𝐼𝑈𝑌 ∈ ℕ0) → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
671, 6, 13, 66syl3anc 1475 . 2 (𝜑 → ((𝑆𝐼)‘𝑌) = {𝑎 ∣ ∃𝑏𝐼 ((( deg1𝑅)‘𝑏) ≤ 𝑌𝑎 = ((coe1𝑏)‘𝑌))})
6862, 65, 673sstr4d 3795 1 (𝜑 → ((𝑆𝐼)‘𝑋) ⊆ ((𝑆𝐼)‘𝑌))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 382   = wceq 1630   ∈ wcel 2144  {cab 2756  ∃wrex 3061   ⊆ wss 3721   class class class wbr 4784  ‘cfv 6031  (class class class)co 6792   + caddc 10140   ≤ cle 10276   − cmin 10467  ℕ0cn0 11493  Basecbs 16063  .rcmulr 16149  0gc0g 16307  Mndcmnd 17501  .gcmg 17747  mulGrpcmgp 18696  Ringcrg 18754  LIdealclidl 19384  var1cv1 19760  Poly1cpl1 19761  coe1cco1 19762   deg1 cdg1 24033  ldgIdlSeqcldgis 38210 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095  ax-inf2 8701  ax-cnex 10193  ax-resscn 10194  ax-1cn 10195  ax-icn 10196  ax-addcl 10197  ax-addrcl 10198  ax-mulcl 10199  ax-mulrcl 10200  ax-mulcom 10201  ax-addass 10202  ax-mulass 10203  ax-distr 10204  ax-i2m1 10205  ax-1ne0 10206  ax-1rid 10207  ax-rnegex 10208  ax-rrecex 10209  ax-cnre 10210  ax-pre-lttri 10211  ax-pre-lttrn 10212  ax-pre-ltadd 10213  ax-pre-mulgt0 10214  ax-pre-sup 10215  ax-addf 10216  ax-mulf 10217 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3or 1071  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rmo 3068  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-pss 3737  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-tp 4319  df-op 4321  df-uni 4573  df-int 4610  df-iun 4654  df-iin 4655  df-br 4785  df-opab 4845  df-mpt 4862  df-tr 4885  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6753  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-of 7043  df-ofr 7044  df-om 7212  df-1st 7314  df-2nd 7315  df-supp 7446  df-wrecs 7558  df-recs 7620  df-rdg 7658  df-1o 7712  df-2o 7713  df-oadd 7716  df-er 7895  df-map 8010  df-pm 8011  df-ixp 8062  df-en 8109  df-dom 8110  df-sdom 8111  df-fin 8112  df-fsupp 8431  df-sup 8503  df-oi 8570  df-card 8964  df-pnf 10277  df-mnf 10278  df-xr 10279  df-ltxr 10280  df-le 10281  df-sub 10469  df-neg 10470  df-nn 11222  df-2 11280  df-3 11281  df-4 11282  df-5 11283  df-6 11284  df-7 11285  df-8 11286  df-9 11287  df-n0 11494  df-z 11579  df-dec 11695  df-uz 11888  df-fz 12533  df-fzo 12673  df-seq 13008  df-hash 13321  df-struct 16065  df-ndx 16066  df-slot 16067  df-base 16069  df-sets 16070  df-ress 16071  df-plusg 16161  df-mulr 16162  df-starv 16163  df-sca 16164  df-vsca 16165  df-ip 16166  df-tset 16167  df-ple 16168  df-ds 16171  df-unif 16172  df-0g 16309  df-gsum 16310  df-mre 16453  df-mrc 16454  df-acs 16456  df-mgm 17449  df-sgrp 17491  df-mnd 17502  df-mhm 17542  df-submnd 17543  df-grp 17632  df-minusg 17633  df-sbg 17634  df-mulg 17748  df-subg 17798  df-ghm 17865  df-cntz 17956  df-cmn 18401  df-abl 18402  df-mgp 18697  df-ur 18709  df-ring 18756  df-cring 18757  df-subrg 18987  df-lmod 19074  df-lss 19142  df-sra 19386  df-rgmod 19387  df-lidl 19388  df-psr 19570  df-mvr 19571  df-mpl 19572  df-opsr 19574  df-psr1 19764  df-vr1 19765  df-ply1 19766  df-coe1 19767  df-cnfld 19961  df-mdeg 24034  df-deg1 24035  df-ldgis 38211 This theorem is referenced by:  hbt  38219
 Copyright terms: Public domain W3C validator