Mathbox for Alan Sare < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbra2VD Structured version   Visualization version   GIF version

Theorem hbra2VD 39618
Description: Virtual deduction proof of nfra2 3095. The following user's proof is completed by invoking mmj2's unify command and using mmj2's StepSelector to pick all remaining steps of the Metamath proof.
 1:: ⊢ (∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑 → ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 2:: ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 3:1,2,?: e00 39520 ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 → ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 4:2: ⊢ ∀𝑦(∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) 5:4,?: e0a 39524 ⊢ (∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 ↔ ∀𝑦∀𝑦 ∈ 𝐵∀𝑥 ∈ 𝐴𝜑) qed:3,5,?: e00 39520 ⊢ (∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑 → ∀𝑦∀𝑥 ∈ 𝐴∀𝑦 ∈ 𝐵𝜑)
(Contributed by Alan Sare, 31-Dec-2011.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
hbra2VD (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)
Distinct variable groups:   𝑦,𝐴   𝑥,𝐵   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)   𝐴(𝑥)   𝐵(𝑦)

Proof of Theorem hbra2VD
StepHypRef Expression
1 ralcom 3246 . 2 (∀𝑥𝐴𝑦𝐵 𝜑 ↔ ∀𝑦𝐵𝑥𝐴 𝜑)
2 hbra1 3091 . 2 (∀𝑦𝐵𝑥𝐴 𝜑 → ∀𝑦𝑦𝐵𝑥𝐴 𝜑)
31, 2hbxfrbi 1900 1 (∀𝑥𝐴𝑦𝐵 𝜑 → ∀𝑦𝑥𝐴𝑦𝐵 𝜑)
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1629  ∀wral 3061 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-clel 2767  df-nfc 2902  df-ral 3066 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator