MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnaes Structured version   Visualization version   GIF version

Theorem hbnaes 2425
Description: Rule that applies hbnae 2423 to antecedent. (Contributed by NM, 15-May-1993.)
Hypothesis
Ref Expression
hbnaes.1 (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)
Assertion
Ref Expression
hbnaes (¬ ∀𝑥 𝑥 = 𝑦𝜑)

Proof of Theorem hbnaes
StepHypRef Expression
1 hbnae 2423 . 2 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
2 hbnaes.1 . 2 (∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦𝜑)
31, 2syl 17 1 (¬ ∀𝑥 𝑥 = 𝑦𝜑)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1594
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1599  df-ex 1818  df-nf 1823
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator