MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbnae Structured version   Visualization version   GIF version

Theorem hbnae 2350
Description: All variables are effectively bound in a distinct variable specifier. Lemma L19 in [Megill] p. 446 (p. 14 of the preprint). (Contributed by NM, 13-May-1993.)
Assertion
Ref Expression
hbnae (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)

Proof of Theorem hbnae
StepHypRef Expression
1 hbae 2348 . 2 (∀𝑥 𝑥 = 𝑦 → ∀𝑧𝑥 𝑥 = 𝑦)
21hbn 2184 1 (¬ ∀𝑥 𝑥 = 𝑦 → ∀𝑧 ¬ ∀𝑥 𝑥 = 𝑦)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wal 1521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-11 2074  ax-12 2087  ax-13 2282
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-tru 1526  df-ex 1745  df-nf 1750
This theorem is referenced by:  hbnaes  2352  eujustALT  2501  bj-hbnaeb  32932  ax6e2nd  39091  ax6e2ndVD  39458  ax6e2ndeqVD  39459  ax6e2ndALT  39480  ax6e2ndeqALT  39481
  Copyright terms: Public domain W3C validator