Users' Mathboxes Mathbox for Alan Sare < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hbimpgVD Structured version   Visualization version   GIF version

Theorem hbimpgVD 38662
Description: Virtual deduction proof of hbimpg 38291. The following User's Proof is a Virtual Deduction proof completed automatically by the tools program completeusersproof.cmd, which invokes Mel L. O'Cat's mmj2 and Norm Megill's Metamath Proof Assistant. hbimpg 38291 is hbimpgVD 38662 without virtual deductions and was automatically derived from hbimpgVD 38662. (Contributed by Alan Sare, 8-Feb-2014.) (Proof modification is discouraged.) (New usage is discouraged.)
1:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓))   )
2:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
3:: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   ¬ 𝜑   )
4:2: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥𝜑 → ∀𝑥¬ 𝜑)   )
5:4: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥¬ 𝜑)   )
6:3,5: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥¬ 𝜑   )
7:: 𝜑 → (𝜑𝜓))
8:7: (∀𝑥¬ 𝜑 → ∀𝑥(𝜑𝜓))
9:6,8: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)), ¬ 𝜑   ▶   𝑥(𝜑𝜓)   )
10:9: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥(𝜑𝜓))   )
11:: (𝜓 → (𝜑𝜓))
12:11: (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
13:1: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
14:13: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   )
15:14,12: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑𝜓))   )
16:10,15: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
17:: ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
18:16,17: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
19:: (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥( 𝜑 → ∀𝑥𝜑))
20:: (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥𝑥( 𝜓 → ∀𝑥𝜓))
21:19,20: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 𝑥𝜓)))
22:21,18: (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
qed:22: ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
Assertion
Ref Expression
hbimpgVD ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))

Proof of Theorem hbimpgVD
StepHypRef Expression
1 hba1 2148 . . . 4 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝑥(𝜑 → ∀𝑥𝜑))
2 hba1 2148 . . . 4 (∀𝑥(𝜓 → ∀𝑥𝜓) → ∀𝑥𝑥(𝜓 → ∀𝑥𝜓))
31, 2hban 2124 . . 3 ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)))
4 idn2 38359 . . . . . . . 8 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ,    ¬ 𝜑   ▶    ¬ 𝜑   )
5 idn1 38311 . . . . . . . . . . 11 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   )
6 simpl 473 . . . . . . . . . . 11 ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(𝜑 → ∀𝑥𝜑))
75, 6e1a 38373 . . . . . . . . . 10 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜑 → ∀𝑥𝜑)   )
8 hbntal 38290 . . . . . . . . . 10 (∀𝑥(𝜑 → ∀𝑥𝜑) → ∀𝑥𝜑 → ∀𝑥 ¬ 𝜑))
97, 8e1a 38373 . . . . . . . . 9 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥𝜑 → ∀𝑥 ¬ 𝜑)   )
10 sp 2051 . . . . . . . . 9 (∀𝑥𝜑 → ∀𝑥 ¬ 𝜑) → (¬ 𝜑 → ∀𝑥 ¬ 𝜑))
119, 10e1a 38373 . . . . . . . 8 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥 ¬ 𝜑)   )
12 pm2.27 42 . . . . . . . 8 𝜑 → ((¬ 𝜑 → ∀𝑥 ¬ 𝜑) → ∀𝑥 ¬ 𝜑))
134, 11, 12e21 38478 . . . . . . 7 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ,    ¬ 𝜑   ▶   𝑥 ¬ 𝜑   )
14 pm2.21 120 . . . . . . . 8 𝜑 → (𝜑𝜓))
1514alimi 1736 . . . . . . 7 (∀𝑥 ¬ 𝜑 → ∀𝑥(𝜑𝜓))
1613, 15e2 38377 . . . . . 6 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ,    ¬ 𝜑   ▶   𝑥(𝜑𝜓)   )
1716in2 38351 . . . . 5 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝜑 → ∀𝑥(𝜑𝜓))   )
18 simpr 477 . . . . . . . 8 ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥(𝜓 → ∀𝑥𝜓))
195, 18e1a 38373 . . . . . . 7 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥(𝜓 → ∀𝑥𝜓)   )
20 sp 2051 . . . . . . 7 (∀𝑥(𝜓 → ∀𝑥𝜓) → (𝜓 → ∀𝑥𝜓))
2119, 20e1a 38373 . . . . . 6 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥𝜓)   )
22 ax-1 6 . . . . . . 7 (𝜓 → (𝜑𝜓))
2322alimi 1736 . . . . . 6 (∀𝑥𝜓 → ∀𝑥(𝜑𝜓))
24 imim1 83 . . . . . 6 ((𝜓 → ∀𝑥𝜓) → ((∀𝑥𝜓 → ∀𝑥(𝜑𝜓)) → (𝜓 → ∀𝑥(𝜑𝜓))))
2521, 23, 24e10 38440 . . . . 5 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   (𝜓 → ∀𝑥(𝜑𝜓))   )
26 jao 534 . . . . 5 ((¬ 𝜑 → ∀𝑥(𝜑𝜓)) → ((𝜓 → ∀𝑥(𝜑𝜓)) → ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))))
2717, 25, 26e11 38434 . . . 4 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
28 imor 428 . . . 4 ((𝜑𝜓) ↔ (¬ 𝜑𝜓))
29 imbi1 337 . . . . 5 (((𝜑𝜓) ↔ (¬ 𝜑𝜓)) → (((𝜑𝜓) → ∀𝑥(𝜑𝜓)) ↔ ((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓))))
3029biimprcd 240 . . . 4 (((¬ 𝜑𝜓) → ∀𝑥(𝜑𝜓)) → (((𝜑𝜓) ↔ (¬ 𝜑𝜓)) → ((𝜑𝜓) → ∀𝑥(𝜑𝜓))))
3127, 28, 30e10 38440 . . 3 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   ((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
323, 31gen11nv 38363 . 2 (   (∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓))   ▶   𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓))   )
3332in1 38308 1 ((∀𝑥(𝜑 → ∀𝑥𝜑) ∧ ∀𝑥(𝜓 → ∀𝑥𝜓)) → ∀𝑥((𝜑𝜓) → ∀𝑥(𝜑𝜓)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wo 383  wa 384  wal 1478
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1719  ax-4 1734  ax-5 1836  ax-6 1885  ax-7 1932  ax-10 2016  ax-12 2044
This theorem depends on definitions:  df-bi 197  df-or 385  df-an 386  df-tru 1483  df-ex 1702  df-nf 1707  df-vd1 38307  df-vd2 38315
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator