Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbimd Structured version   Visualization version   GIF version

Theorem hbimd 2265
 Description: Deduction form of bound-variable hypothesis builder hbim 2266. (Contributed by NM, 14-May-1993.) (Proof shortened by Wolf Lammen, 3-Jan-2018.)
Hypotheses
Ref Expression
hbimd.1 (𝜑 → ∀𝑥𝜑)
hbimd.2 (𝜑 → (𝜓 → ∀𝑥𝜓))
hbimd.3 (𝜑 → (𝜒 → ∀𝑥𝜒))
Assertion
Ref Expression
hbimd (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))

Proof of Theorem hbimd
StepHypRef Expression
1 hbimd.1 . . . 4 (𝜑 → ∀𝑥𝜑)
2 hbimd.2 . . . 4 (𝜑 → (𝜓 → ∀𝑥𝜓))
31, 2nf5dh 2167 . . 3 (𝜑 → Ⅎ𝑥𝜓)
4 hbimd.3 . . . 4 (𝜑 → (𝜒 → ∀𝑥𝜒))
51, 4nf5dh 2167 . . 3 (𝜑 → Ⅎ𝑥𝜒)
63, 5nfimd 1964 . 2 (𝜑 → Ⅎ𝑥(𝜓𝜒))
76nf5rd 2205 1 (𝜑 → ((𝜓𝜒) → ∀𝑥(𝜓𝜒)))
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1622 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1863  ax-4 1878  ax-5 1980  ax-6 2046  ax-7 2082  ax-10 2160  ax-12 2188 This theorem depends on definitions:  df-bi 197  df-an 385  df-ex 1846  df-nf 1851 This theorem is referenced by:  dvelimf-o  34710
 Copyright terms: Public domain W3C validator