Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hbab1 Structured version   Visualization version   GIF version

Theorem hbab1 2640
 Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by NM, 26-May-1993.)
Assertion
Ref Expression
hbab1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
Distinct variable group:   𝑥,𝑦
Allowed substitution hints:   𝜑(𝑥,𝑦)

Proof of Theorem hbab1
StepHypRef Expression
1 df-clab 2638 . 2 (𝑦 ∈ {𝑥𝜑} ↔ [𝑦 / 𝑥]𝜑)
2 hbs1 2464 . 2 ([𝑦 / 𝑥]𝜑 → ∀𝑥[𝑦 / 𝑥]𝜑)
31, 2hbxfrbi 1792 1 (𝑦 ∈ {𝑥𝜑} → ∀𝑥 𝑦 ∈ {𝑥𝜑})
 Colors of variables: wff setvar class Syntax hints:   → wi 4  ∀wal 1521  [wsb 1937   ∈ wcel 2030  {cab 2637 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1762  ax-4 1777  ax-5 1879  ax-6 1945  ax-7 1981  ax-10 2059  ax-12 2087  ax-13 2282 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-ex 1745  df-nf 1750  df-sb 1938  df-clab 2638 This theorem is referenced by:  nfsab1  2641  abeq2  2761  abbi  2766  abeq2f  2821  bnj1317  31018  bnj1318  31219
 Copyright terms: Public domain W3C validator