Mathbox for Norm Megill < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hba1-o Structured version   Visualization version   GIF version

Theorem hba1-o 34001
 Description: The setvar 𝑥 is not free in ∀𝑥𝜑. Example in Appendix in [Megill] p. 450 (p. 19 of the preprint). Also Lemma 22 of [Monk2] p. 114. (Contributed by NM, 24-Jan-1993.) (New usage is discouraged.)
Assertion
Ref Expression
hba1-o (∀𝑥𝜑 → ∀𝑥𝑥𝜑)

Proof of Theorem hba1-o
StepHypRef Expression
1 ax-c5 33987 . . 3 (∀𝑥 ¬ ∀𝑥𝜑 → ¬ ∀𝑥𝜑)
21con2i 134 . 2 (∀𝑥𝜑 → ¬ ∀𝑥 ¬ ∀𝑥𝜑)
3 ax10fromc7 33999 . 2 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑)
4 ax10fromc7 33999 . . . 4 (¬ ∀𝑥𝜑 → ∀𝑥 ¬ ∀𝑥𝜑)
54con1i 144 . . 3 (¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝜑)
65alimi 1737 . 2 (∀𝑥 ¬ ∀𝑥 ¬ ∀𝑥𝜑 → ∀𝑥𝑥𝜑)
72, 3, 63syl 18 1 (∀𝑥𝜑 → ∀𝑥𝑥𝜑)
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4  ∀wal 1479 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1720  ax-4 1735  ax-c5 33987  ax-c4 33988  ax-c7 33989 This theorem is referenced by:  axc4i-o  34002  nfa1-o  34019  axc711toc7  34020  axc5c711toc7  34024  dvelimf-o  34033  ax12indalem  34049  ax12inda2ALT  34050  ax12inda  34052
 Copyright terms: Public domain W3C validator