MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  haust1 Structured version   Visualization version   GIF version

Theorem haust1 21358
Description: A Hausdorff space is a T1 space. (Contributed by FL, 11-Jun-2007.) (Proof shortened by Mario Carneiro, 24-Aug-2015.)
Assertion
Ref Expression
haust1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)

Proof of Theorem haust1
Dummy variables 𝑥 𝑦 𝑧 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2760 . . . . . . . . 9 𝐽 = 𝐽
21hausnei 21334 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))
3 simprr1 1273 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑥𝑧)
4 noel 4062 . . . . . . . . . . . . 13 ¬ 𝑦 ∈ ∅
5 simprr3 1277 . . . . . . . . . . . . . 14 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑧𝑤) = ∅)
65eleq2d 2825 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦 ∈ (𝑧𝑤) ↔ 𝑦 ∈ ∅))
74, 6mtbiri 316 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦 ∈ (𝑧𝑤))
8 simprr2 1275 . . . . . . . . . . . . 13 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → 𝑦𝑤)
9 elin 3939 . . . . . . . . . . . . . 14 (𝑦 ∈ (𝑧𝑤) ↔ (𝑦𝑧𝑦𝑤))
109simplbi2com 658 . . . . . . . . . . . . 13 (𝑦𝑤 → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
118, 10syl 17 . . . . . . . . . . . 12 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑦𝑧𝑦 ∈ (𝑧𝑤)))
127, 11mtod 189 . . . . . . . . . . 11 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → ¬ 𝑦𝑧)
133, 12jca 555 . . . . . . . . . 10 ((((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) ∧ (𝑤𝐽 ∧ (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅))) → (𝑥𝑧 ∧ ¬ 𝑦𝑧))
1413rexlimdvaa 3170 . . . . . . . . 9 (((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) ∧ 𝑧𝐽) → (∃𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
1514reximdva 3155 . . . . . . . 8 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → (∃𝑧𝐽𝑤𝐽 (𝑥𝑧𝑦𝑤 ∧ (𝑧𝑤) = ∅) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧)))
162, 15mpd 15 . . . . . . 7 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧))
17 rexanali 3136 . . . . . . 7 (∃𝑧𝐽 (𝑥𝑧 ∧ ¬ 𝑦𝑧) ↔ ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
1816, 17sylib 208 . . . . . 6 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽𝑥𝑦)) → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧))
19183exp2 1448 . . . . 5 (𝐽 ∈ Haus → (𝑥 𝐽 → (𝑦 𝐽 → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))))
2019imp32 448 . . . 4 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (𝑥𝑦 → ¬ ∀𝑧𝐽 (𝑥𝑧𝑦𝑧)))
2120necon4ad 2951 . . 3 ((𝐽 ∈ Haus ∧ (𝑥 𝐽𝑦 𝐽)) → (∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
2221ralrimivva 3109 . 2 (𝐽 ∈ Haus → ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦))
23 haustop 21337 . . . 4 (𝐽 ∈ Haus → 𝐽 ∈ Top)
241toptopon 20924 . . . 4 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘ 𝐽))
2523, 24sylib 208 . . 3 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘ 𝐽))
26 ist1-2 21353 . . 3 (𝐽 ∈ (TopOn‘ 𝐽) → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2725, 26syl 17 . 2 (𝐽 ∈ Haus → (𝐽 ∈ Fre ↔ ∀𝑥 𝐽𝑦 𝐽(∀𝑧𝐽 (𝑥𝑧𝑦𝑧) → 𝑥 = 𝑦)))
2822, 27mpbird 247 1 (𝐽 ∈ Haus → 𝐽 ∈ Fre)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  wral 3050  wrex 3051  cin 3714  c0 4058   cuni 4588  cfv 6049  Topctop 20900  TopOnctopon 20917  Frect1 21313  Hauscha 21314
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-ral 3055  df-rex 3056  df-rab 3059  df-v 3342  df-sbc 3577  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-op 4328  df-uni 4589  df-br 4805  df-opab 4865  df-mpt 4882  df-id 5174  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-iota 6012  df-fun 6051  df-fv 6057  df-topgen 16306  df-top 20901  df-topon 20918  df-cld 21025  df-t1 21320  df-haus 21321
This theorem is referenced by:  sncld  21377  ishaus3  21828  reghaus  21830  nrmhaus  21831  tgpt1  22122  metreg  22867  ipasslem8  28001  sitmcl  30722  onint1  32754  oninhaus  32755  poimirlem30  33752
  Copyright terms: Public domain W3C validator