Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hausflf Structured version   Visualization version   GIF version

Theorem hausflf 22020
 Description: If a function has its values in a Hausdorff space, then it has at most one limit value. (Contributed by FL, 14-Nov-2010.) (Revised by Stefan O'Rear, 6-Aug-2015.)
Hypothesis
Ref Expression
hausflf.x 𝑋 = 𝐽
Assertion
Ref Expression
hausflf ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
Distinct variable groups:   𝑥,𝐹   𝑥,𝐽   𝑥,𝐿   𝑥,𝑋   𝑥,𝑌

Proof of Theorem hausflf
StepHypRef Expression
1 hausflimi 22003 . . 3 (𝐽 ∈ Haus → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
213ad2ant1 1126 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
3 haustop 21355 . . . . . 6 (𝐽 ∈ Haus → 𝐽 ∈ Top)
4 hausflf.x . . . . . . 7 𝑋 = 𝐽
54toptopon 20941 . . . . . 6 (𝐽 ∈ Top ↔ 𝐽 ∈ (TopOn‘𝑋))
63, 5sylib 208 . . . . 5 (𝐽 ∈ Haus → 𝐽 ∈ (TopOn‘𝑋))
7 flfval 22013 . . . . 5 ((𝐽 ∈ (TopOn‘𝑋) ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
86, 7syl3an1 1165 . . . 4 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ((𝐽 fLimf 𝐿)‘𝐹) = (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿)))
98eleq2d 2835 . . 3 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
109mobidv 2638 . 2 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → (∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹) ↔ ∃*𝑥 𝑥 ∈ (𝐽 fLim ((𝑋 FilMap 𝐹)‘𝐿))))
112, 10mpbird 247 1 ((𝐽 ∈ Haus ∧ 𝐿 ∈ (Fil‘𝑌) ∧ 𝐹:𝑌𝑋) → ∃*𝑥 𝑥 ∈ ((𝐽 fLimf 𝐿)‘𝐹))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ w3a 1070   = wceq 1630   ∈ wcel 2144  ∃*wmo 2618  ∪ cuni 4572  ⟶wf 6027  ‘cfv 6031  (class class class)co 6792  Topctop 20917  TopOnctopon 20934  Hauscha 21332  Filcfil 21868   FilMap cfm 21956   fLim cflim 21957   fLimf cflf 21958 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1869  ax-4 1884  ax-5 1990  ax-6 2056  ax-7 2092  ax-8 2146  ax-9 2153  ax-10 2173  ax-11 2189  ax-12 2202  ax-13 2407  ax-ext 2750  ax-rep 4902  ax-sep 4912  ax-nul 4920  ax-pow 4971  ax-pr 5034  ax-un 7095 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 827  df-3an 1072  df-tru 1633  df-ex 1852  df-nf 1857  df-sb 2049  df-eu 2621  df-mo 2622  df-clab 2757  df-cleq 2763  df-clel 2766  df-nfc 2901  df-ne 2943  df-nel 3046  df-ral 3065  df-rex 3066  df-reu 3067  df-rab 3069  df-v 3351  df-sbc 3586  df-csb 3681  df-dif 3724  df-un 3726  df-in 3728  df-ss 3735  df-nul 4062  df-if 4224  df-pw 4297  df-sn 4315  df-pr 4317  df-op 4321  df-uni 4573  df-iun 4654  df-br 4785  df-opab 4845  df-mpt 4862  df-id 5157  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-ov 6795  df-oprab 6796  df-mpt2 6797  df-map 8010  df-fbas 19957  df-top 20918  df-topon 20935  df-nei 21122  df-haus 21339  df-fil 21869  df-flim 21962  df-flf 21963 This theorem is referenced by:  hausflf2  22021  cnextfun  22087  haustsms  22158  limcmo  23865
 Copyright terms: Public domain W3C validator