Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  hauseqcn Structured version   Visualization version   GIF version

Theorem hauseqcn 30171
Description: In a Hausdorff topology, two continuous functions which agree on a dense set agree everywhere. (Contributed by Thierry Arnoux, 28-Dec-2017.)
Hypotheses
Ref Expression
hauseqcn.x 𝑋 = 𝐽
hauseqcn.k (𝜑𝐾 ∈ Haus)
hauseqcn.f (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
hauseqcn.g (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
hauseqcn.e (𝜑 → (𝐹𝐴) = (𝐺𝐴))
hauseqcn.a (𝜑𝐴𝑋)
hauseqcn.c (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
Assertion
Ref Expression
hauseqcn (𝜑𝐹 = 𝐺)

Proof of Theorem hauseqcn
StepHypRef Expression
1 hauseqcn.x . . 3 𝑋 = 𝐽
2 hauseqcn.f . . . . . 6 (𝜑𝐹 ∈ (𝐽 Cn 𝐾))
3 cntop1 21167 . . . . . 6 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐽 ∈ Top)
42, 3syl 17 . . . . 5 (𝜑𝐽 ∈ Top)
5 dmin 5439 . . . . . 6 dom (𝐹𝐺) ⊆ (dom 𝐹 ∩ dom 𝐺)
6 eqid 2724 . . . . . . . . . 10 𝐽 = 𝐽
7 eqid 2724 . . . . . . . . . 10 𝐾 = 𝐾
86, 7cnf 21173 . . . . . . . . 9 (𝐹 ∈ (𝐽 Cn 𝐾) → 𝐹: 𝐽 𝐾)
9 fdm 6164 . . . . . . . . 9 (𝐹: 𝐽 𝐾 → dom 𝐹 = 𝐽)
102, 8, 93syl 18 . . . . . . . 8 (𝜑 → dom 𝐹 = 𝐽)
11 hauseqcn.g . . . . . . . . 9 (𝜑𝐺 ∈ (𝐽 Cn 𝐾))
126, 7cnf 21173 . . . . . . . . 9 (𝐺 ∈ (𝐽 Cn 𝐾) → 𝐺: 𝐽 𝐾)
13 fdm 6164 . . . . . . . . 9 (𝐺: 𝐽 𝐾 → dom 𝐺 = 𝐽)
1411, 12, 133syl 18 . . . . . . . 8 (𝜑 → dom 𝐺 = 𝐽)
1510, 14ineq12d 3923 . . . . . . 7 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = ( 𝐽 𝐽))
16 inidm 3930 . . . . . . 7 ( 𝐽 𝐽) = 𝐽
1715, 16syl6eq 2774 . . . . . 6 (𝜑 → (dom 𝐹 ∩ dom 𝐺) = 𝐽)
185, 17syl5sseq 3759 . . . . 5 (𝜑 → dom (𝐹𝐺) ⊆ 𝐽)
19 hauseqcn.e . . . . . 6 (𝜑 → (𝐹𝐴) = (𝐺𝐴))
20 ffn 6158 . . . . . . . 8 (𝐹: 𝐽 𝐾𝐹 Fn 𝐽)
212, 8, 203syl 18 . . . . . . 7 (𝜑𝐹 Fn 𝐽)
22 ffn 6158 . . . . . . . 8 (𝐺: 𝐽 𝐾𝐺 Fn 𝐽)
2311, 12, 223syl 18 . . . . . . 7 (𝜑𝐺 Fn 𝐽)
24 hauseqcn.a . . . . . . . 8 (𝜑𝐴𝑋)
2524, 1syl6sseq 3757 . . . . . . 7 (𝜑𝐴 𝐽)
26 fnreseql 6442 . . . . . . 7 ((𝐹 Fn 𝐽𝐺 Fn 𝐽𝐴 𝐽) → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2721, 23, 25, 26syl3anc 1439 . . . . . 6 (𝜑 → ((𝐹𝐴) = (𝐺𝐴) ↔ 𝐴 ⊆ dom (𝐹𝐺)))
2819, 27mpbid 222 . . . . 5 (𝜑𝐴 ⊆ dom (𝐹𝐺))
296clsss 20981 . . . . 5 ((𝐽 ∈ Top ∧ dom (𝐹𝐺) ⊆ 𝐽𝐴 ⊆ dom (𝐹𝐺)) → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
304, 18, 28, 29syl3anc 1439 . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) ⊆ ((cls‘𝐽)‘dom (𝐹𝐺)))
31 hauseqcn.c . . . 4 (𝜑 → ((cls‘𝐽)‘𝐴) = 𝑋)
32 hauseqcn.k . . . . . 6 (𝜑𝐾 ∈ Haus)
3332, 2, 11hauseqlcld 21572 . . . . 5 (𝜑 → dom (𝐹𝐺) ∈ (Clsd‘𝐽))
34 cldcls 20969 . . . . 5 (dom (𝐹𝐺) ∈ (Clsd‘𝐽) → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3533, 34syl 17 . . . 4 (𝜑 → ((cls‘𝐽)‘dom (𝐹𝐺)) = dom (𝐹𝐺))
3630, 31, 353sstr3d 3753 . . 3 (𝜑𝑋 ⊆ dom (𝐹𝐺))
371, 36syl5eqssr 3756 . 2 (𝜑 𝐽 ⊆ dom (𝐹𝐺))
38 fneqeql2 6441 . . 3 ((𝐹 Fn 𝐽𝐺 Fn 𝐽) → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
3921, 23, 38syl2anc 696 . 2 (𝜑 → (𝐹 = 𝐺 𝐽 ⊆ dom (𝐹𝐺)))
4037, 39mpbird 247 1 (𝜑𝐹 = 𝐺)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196   = wceq 1596  wcel 2103  cin 3679  wss 3680   cuni 4544  dom cdm 5218  cres 5220   Fn wfn 5996  wf 5997  cfv 6001  (class class class)co 6765  Topctop 20821  Clsdccld 20943  clsccl 20945   Cn ccn 21151  Hauscha 21235
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1835  ax-4 1850  ax-5 1952  ax-6 2018  ax-7 2054  ax-8 2105  ax-9 2112  ax-10 2132  ax-11 2147  ax-12 2160  ax-13 2355  ax-ext 2704  ax-rep 4879  ax-sep 4889  ax-nul 4897  ax-pow 4948  ax-pr 5011  ax-un 7066
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3an 1074  df-tru 1599  df-ex 1818  df-nf 1823  df-sb 2011  df-eu 2575  df-mo 2576  df-clab 2711  df-cleq 2717  df-clel 2720  df-nfc 2855  df-ne 2897  df-ral 3019  df-rex 3020  df-reu 3021  df-rab 3023  df-v 3306  df-sbc 3542  df-csb 3640  df-dif 3683  df-un 3685  df-in 3687  df-ss 3694  df-nul 4024  df-if 4195  df-pw 4268  df-sn 4286  df-pr 4288  df-op 4292  df-uni 4545  df-int 4584  df-iun 4630  df-br 4761  df-opab 4821  df-mpt 4838  df-id 5128  df-xp 5224  df-rel 5225  df-cnv 5226  df-co 5227  df-dm 5228  df-rn 5229  df-res 5230  df-ima 5231  df-iota 5964  df-fun 6003  df-fn 6004  df-f 6005  df-f1 6006  df-fo 6007  df-f1o 6008  df-fv 6009  df-ov 6768  df-oprab 6769  df-mpt2 6770  df-1st 7285  df-2nd 7286  df-map 7976  df-topgen 16227  df-top 20822  df-topon 20839  df-bases 20873  df-cld 20946  df-cls 20948  df-cn 21154  df-haus 21242  df-tx 21488
This theorem is referenced by:  rrhre  30295
  Copyright terms: Public domain W3C validator