Hilbert Space Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  HSE Home  >  Th. List  >  hatomistici Structured version   Visualization version   GIF version

Theorem hatomistici 29561
 Description: Cℋ is atomistic, i.e. any element is the supremum of its atoms. Remark in [Kalmbach] p. 140. (Contributed by NM, 14-Aug-2002.) (New usage is discouraged.)
Hypothesis
Ref Expression
hatomistic.1 𝐴C
Assertion
Ref Expression
hatomistici 𝐴 = ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})
Distinct variable group:   𝑥,𝐴

Proof of Theorem hatomistici
Dummy variable 𝑦 is distinct from all other variables.
StepHypRef Expression
1 ssrab2 3836 . . . . 5 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ HAtoms
2 atssch 29542 . . . . 5 HAtoms ⊆ C
31, 2sstri 3761 . . . 4 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ C
4 chsupcl 28539 . . . 4 ({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ C → ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∈ C )
53, 4ax-mp 5 . . 3 ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∈ C
6 hatomistic.1 . . . 4 𝐴C
76chshii 28424 . . 3 𝐴S
8 atelch 29543 . . . . . . . 8 (𝑦 ∈ HAtoms → 𝑦C )
98anim1i 602 . . . . . . 7 ((𝑦 ∈ HAtoms ∧ 𝑦𝐴) → (𝑦C𝑦𝐴))
10 sseq1 3775 . . . . . . . 8 (𝑥 = 𝑦 → (𝑥𝐴𝑦𝐴))
1110elrab 3515 . . . . . . 7 (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ↔ (𝑦 ∈ HAtoms ∧ 𝑦𝐴))
1210elrab 3515 . . . . . . 7 (𝑦 ∈ {𝑥C𝑥𝐴} ↔ (𝑦C𝑦𝐴))
139, 11, 123imtr4i 281 . . . . . 6 (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} → 𝑦 ∈ {𝑥C𝑥𝐴})
1413ssriv 3756 . . . . 5 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥C𝑥𝐴}
15 ssrab2 3836 . . . . . 6 {𝑥C𝑥𝐴} ⊆ C
16 chsupss 28541 . . . . . 6 (({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ C ∧ {𝑥C𝑥𝐴} ⊆ C ) → ({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥C𝑥𝐴} → ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ ( ‘{𝑥C𝑥𝐴})))
173, 15, 16mp2an 672 . . . . 5 ({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ {𝑥C𝑥𝐴} → ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ ( ‘{𝑥C𝑥𝐴}))
1814, 17ax-mp 5 . . . 4 ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ ( ‘{𝑥C𝑥𝐴})
19 chsupid 28611 . . . . 5 (𝐴C → ( ‘{𝑥C𝑥𝐴}) = 𝐴)
206, 19ax-mp 5 . . . 4 ( ‘{𝑥C𝑥𝐴}) = 𝐴
2118, 20sseqtri 3786 . . 3 ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ⊆ 𝐴
22 elssuni 4603 . . . . . . . . . . 11 (𝑦 ∈ {𝑥 ∈ HAtoms ∣ 𝑥𝐴} → 𝑦 {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
2311, 22sylbir 225 . . . . . . . . . 10 ((𝑦 ∈ HAtoms ∧ 𝑦𝐴) → 𝑦 {𝑥 ∈ HAtoms ∣ 𝑥𝐴})
24 chsupunss 28543 . . . . . . . . . . 11 ({𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ C {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
253, 24ax-mp 5 . . . . . . . . . 10 {𝑥 ∈ HAtoms ∣ 𝑥𝐴} ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})
2623, 25syl6ss 3764 . . . . . . . . 9 ((𝑦 ∈ HAtoms ∧ 𝑦𝐴) → 𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))
2726ex 397 . . . . . . . 8 (𝑦 ∈ HAtoms → (𝑦𝐴𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})))
28 atne0 29544 . . . . . . . . . . 11 (𝑦 ∈ HAtoms → 𝑦 ≠ 0)
2928adantr 466 . . . . . . . . . 10 ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})) → 𝑦 ≠ 0)
30 ssin 3983 . . . . . . . . . . . . . . 15 ((𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∧ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ↔ 𝑦 ⊆ (( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
315chocini 28653 . . . . . . . . . . . . . . . 16 (( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) = 0
3231sseq2i 3779 . . . . . . . . . . . . . . 15 (𝑦 ⊆ (( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ↔ 𝑦 ⊆ 0)
3330, 32bitr2i 265 . . . . . . . . . . . . . 14 (𝑦 ⊆ 0 ↔ (𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∧ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
34 chle0 28642 . . . . . . . . . . . . . . 15 (𝑦C → (𝑦 ⊆ 0𝑦 = 0))
358, 34syl 17 . . . . . . . . . . . . . 14 (𝑦 ∈ HAtoms → (𝑦 ⊆ 0𝑦 = 0))
3633, 35syl5bbr 274 . . . . . . . . . . . . 13 (𝑦 ∈ HAtoms → ((𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∧ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ↔ 𝑦 = 0))
3736biimpa 462 . . . . . . . . . . . 12 ((𝑦 ∈ HAtoms ∧ (𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) ∧ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})))) → 𝑦 = 0)
3837expr 444 . . . . . . . . . . 11 ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})) → (𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})) → 𝑦 = 0))
3938necon3ad 2956 . . . . . . . . . 10 ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})) → (𝑦 ≠ 0 → ¬ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
4029, 39mpd 15 . . . . . . . . 9 ((𝑦 ∈ HAtoms ∧ 𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})) → ¬ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})))
4140ex 397 . . . . . . . 8 (𝑦 ∈ HAtoms → (𝑦 ⊆ ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) → ¬ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
4227, 41syld 47 . . . . . . 7 (𝑦 ∈ HAtoms → (𝑦𝐴 → ¬ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
43 imnan 386 . . . . . . 7 ((𝑦𝐴 → ¬ 𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ↔ ¬ (𝑦𝐴𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
4442, 43sylib 208 . . . . . 6 (𝑦 ∈ HAtoms → ¬ (𝑦𝐴𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
45 ssin 3983 . . . . . 6 ((𝑦𝐴𝑦 ⊆ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ↔ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
4644, 45sylnib 317 . . . . 5 (𝑦 ∈ HAtoms → ¬ 𝑦 ⊆ (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
4746nrex 3148 . . . 4 ¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})))
485choccli 28506 . . . . . . 7 (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})) ∈ C
496, 48chincli 28659 . . . . . 6 (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ∈ C
5049hatomici 29558 . . . . 5 ((𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) ≠ 0 → ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))))
5150necon1bi 2971 . . . 4 (¬ ∃𝑦 ∈ HAtoms 𝑦 ⊆ (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) → (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) = 0)
5247, 51ax-mp 5 . . 3 (𝐴 ∩ (⊥‘( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}))) = 0
535, 7, 21, 52omlsii 28602 . 2 ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴}) = 𝐴
5453eqcomi 2780 1 𝐴 = ( ‘{𝑥 ∈ HAtoms ∣ 𝑥𝐴})
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ↔ wb 196   ∧ wa 382   = wceq 1631   ∈ wcel 2145   ≠ wne 2943  ∃wrex 3062  {crab 3065   ∩ cin 3722   ⊆ wss 3723  ∪ cuni 4574  ‘cfv 6031   Cℋ cch 28126  ⊥cort 28127   ∨ℋ chsup 28131  0ℋc0h 28132  HAtomscat 28162 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-inf2 8702  ax-cc 9459  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215  ax-pre-sup 10216  ax-addf 10217  ax-mulf 10218  ax-hilex 28196  ax-hfvadd 28197  ax-hvcom 28198  ax-hvass 28199  ax-hv0cl 28200  ax-hvaddid 28201  ax-hfvmul 28202  ax-hvmulid 28203  ax-hvmulass 28204  ax-hvdistr1 28205  ax-hvdistr2 28206  ax-hvmul0 28207  ax-hfi 28276  ax-his1 28279  ax-his2 28280  ax-his3 28281  ax-his4 28282  ax-hcompl 28399 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 835  df-3or 1072  df-3an 1073  df-tru 1634  df-fal 1637  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-iin 4657  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-se 5209  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-isom 6040  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-of 7044  df-om 7213  df-1st 7315  df-2nd 7316  df-supp 7447  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-1o 7713  df-2o 7714  df-oadd 7717  df-omul 7718  df-er 7896  df-map 8011  df-pm 8012  df-ixp 8063  df-en 8110  df-dom 8111  df-sdom 8112  df-fin 8113  df-fsupp 8432  df-fi 8473  df-sup 8504  df-inf 8505  df-oi 8571  df-card 8965  df-acn 8968  df-cda 9192  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-div 10887  df-nn 11223  df-2 11281  df-3 11282  df-4 11283  df-5 11284  df-6 11285  df-7 11286  df-8 11287  df-9 11288  df-n0 11495  df-z 11580  df-dec 11696  df-uz 11889  df-q 11992  df-rp 12036  df-xneg 12151  df-xadd 12152  df-xmul 12153  df-ioo 12384  df-ico 12386  df-icc 12387  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14047  df-re 14048  df-im 14049  df-sqrt 14183  df-abs 14184  df-clim 14427  df-rlim 14428  df-sum 14625  df-struct 16066  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-mulr 16163  df-starv 16164  df-sca 16165  df-vsca 16166  df-ip 16167  df-tset 16168  df-ple 16169  df-ds 16172  df-unif 16173  df-hom 16174  df-cco 16175  df-rest 16291  df-topn 16292  df-0g 16310  df-gsum 16311  df-topgen 16312  df-pt 16313  df-prds 16316  df-xrs 16370  df-qtop 16375  df-imas 16376  df-xps 16378  df-mre 16454  df-mrc 16455  df-acs 16457  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-mulg 17749  df-cntz 17957  df-cmn 18402  df-psmet 19953  df-xmet 19954  df-met 19955  df-bl 19956  df-mopn 19957  df-fbas 19958  df-fg 19959  df-cnfld 19962  df-top 20919  df-topon 20936  df-topsp 20958  df-bases 20971  df-cld 21044  df-ntr 21045  df-cls 21046  df-nei 21123  df-cn 21252  df-cnp 21253  df-lm 21254  df-haus 21340  df-tx 21586  df-hmeo 21779  df-fil 21870  df-fm 21962  df-flim 21963  df-flf 21964  df-xms 22345  df-ms 22346  df-tms 22347  df-cfil 23272  df-cau 23273  df-cmet 23274  df-grpo 27687  df-gid 27688  df-ginv 27689  df-gdiv 27690  df-ablo 27739  df-vc 27754  df-nv 27787  df-va 27790  df-ba 27791  df-sm 27792  df-0v 27793  df-vs 27794  df-nmcv 27795  df-ims 27796  df-dip 27896  df-ssp 27917  df-ph 28008  df-cbn 28059  df-hnorm 28165  df-hba 28166  df-hvsub 28168  df-hlim 28169  df-hcau 28170  df-sh 28404  df-ch 28418  df-oc 28449  df-ch0 28450  df-span 28508  df-chsup 28510  df-cv 29478  df-at 29537 This theorem is referenced by:  chpssati  29562
 Copyright terms: Public domain W3C validator