MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashunlei Structured version   Visualization version   GIF version

Theorem hashunlei 13425
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.)
Hypotheses
Ref Expression
hashunlei.c 𝐶 = (𝐴𝐵)
hashunlei.a (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾)
hashunlei.b (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀)
hashunlei.k 𝐾 ∈ ℕ0
hashunlei.m 𝑀 ∈ ℕ0
hashunlei.n (𝐾 + 𝑀) = 𝑁
Assertion
Ref Expression
hashunlei (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁)

Proof of Theorem hashunlei
StepHypRef Expression
1 hashunlei.c . . 3 𝐶 = (𝐴𝐵)
2 hashunlei.a . . . . 5 (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾)
32simpli 476 . . . 4 𝐴 ∈ Fin
4 hashunlei.b . . . . 5 (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀)
54simpli 476 . . . 4 𝐵 ∈ Fin
6 unfi 8395 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
73, 5, 6mp2an 710 . . 3 (𝐴𝐵) ∈ Fin
81, 7eqeltri 2836 . 2 𝐶 ∈ Fin
91fveq2i 6357 . . . 4 (♯‘𝐶) = (♯‘(𝐴𝐵))
10 hashun2 13385 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)))
113, 5, 10mp2an 710 . . . 4 (♯‘(𝐴𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))
129, 11eqbrtri 4826 . . 3 (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵))
132simpri 481 . . . . 5 (♯‘𝐴) ≤ 𝐾
144simpri 481 . . . . 5 (♯‘𝐵) ≤ 𝑀
15 hashcl 13360 . . . . . . . 8 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
163, 15ax-mp 5 . . . . . . 7 (♯‘𝐴) ∈ ℕ0
1716nn0rei 11516 . . . . . 6 (♯‘𝐴) ∈ ℝ
18 hashcl 13360 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
195, 18ax-mp 5 . . . . . . 7 (♯‘𝐵) ∈ ℕ0
2019nn0rei 11516 . . . . . 6 (♯‘𝐵) ∈ ℝ
21 hashunlei.k . . . . . . 7 𝐾 ∈ ℕ0
2221nn0rei 11516 . . . . . 6 𝐾 ∈ ℝ
23 hashunlei.m . . . . . . 7 𝑀 ∈ ℕ0
2423nn0rei 11516 . . . . . 6 𝑀 ∈ ℝ
2517, 20, 22, 24le2addi 10804 . . . . 5 (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀))
2613, 14, 25mp2an 710 . . . 4 ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)
27 hashunlei.n . . . 4 (𝐾 + 𝑀) = 𝑁
2826, 27breqtri 4830 . . 3 ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁
29 hashcl 13360 . . . . . 6 (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0)
308, 29ax-mp 5 . . . . 5 (♯‘𝐶) ∈ ℕ0
3130nn0rei 11516 . . . 4 (♯‘𝐶) ∈ ℝ
3217, 20readdcli 10266 . . . 4 ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ
3322, 24readdcli 10266 . . . . 5 (𝐾 + 𝑀) ∈ ℝ
3427, 33eqeltrri 2837 . . . 4 𝑁 ∈ ℝ
3531, 32, 34letri 10379 . . 3 (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁)
3612, 28, 35mp2an 710 . 2 (♯‘𝐶) ≤ 𝑁
378, 36pm3.2i 470 1 (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁)
Colors of variables: wff setvar class
Syntax hints:  wa 383   = wceq 1632  wcel 2140  cun 3714   class class class wbr 4805  cfv 6050  (class class class)co 6815  Fincfn 8124  cr 10148   + caddc 10152  cle 10288  0cn0 11505  chash 13332
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1989  ax-6 2055  ax-7 2091  ax-8 2142  ax-9 2149  ax-10 2169  ax-11 2184  ax-12 2197  ax-13 2392  ax-ext 2741  ax-rep 4924  ax-sep 4934  ax-nul 4942  ax-pow 4993  ax-pr 5056  ax-un 7116  ax-cnex 10205  ax-resscn 10206  ax-1cn 10207  ax-icn 10208  ax-addcl 10209  ax-addrcl 10210  ax-mulcl 10211  ax-mulrcl 10212  ax-mulcom 10213  ax-addass 10214  ax-mulass 10215  ax-distr 10216  ax-i2m1 10217  ax-1ne0 10218  ax-1rid 10219  ax-rnegex 10220  ax-rrecex 10221  ax-cnre 10222  ax-pre-lttri 10223  ax-pre-lttrn 10224  ax-pre-ltadd 10225  ax-pre-mulgt0 10226
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2048  df-eu 2612  df-mo 2613  df-clab 2748  df-cleq 2754  df-clel 2757  df-nfc 2892  df-ne 2934  df-nel 3037  df-ral 3056  df-rex 3057  df-reu 3058  df-rmo 3059  df-rab 3060  df-v 3343  df-sbc 3578  df-csb 3676  df-dif 3719  df-un 3721  df-in 3723  df-ss 3730  df-pss 3732  df-nul 4060  df-if 4232  df-pw 4305  df-sn 4323  df-pr 4325  df-tp 4327  df-op 4329  df-uni 4590  df-int 4629  df-iun 4675  df-br 4806  df-opab 4866  df-mpt 4883  df-tr 4906  df-id 5175  df-eprel 5180  df-po 5188  df-so 5189  df-fr 5226  df-we 5228  df-xp 5273  df-rel 5274  df-cnv 5275  df-co 5276  df-dm 5277  df-rn 5278  df-res 5279  df-ima 5280  df-pred 5842  df-ord 5888  df-on 5889  df-lim 5890  df-suc 5891  df-iota 6013  df-fun 6052  df-fn 6053  df-f 6054  df-f1 6055  df-fo 6056  df-f1o 6057  df-fv 6058  df-riota 6776  df-ov 6818  df-oprab 6819  df-mpt2 6820  df-om 7233  df-1st 7335  df-2nd 7336  df-wrecs 7578  df-recs 7639  df-rdg 7677  df-1o 7731  df-oadd 7735  df-er 7914  df-en 8125  df-dom 8126  df-sdom 8127  df-fin 8128  df-card 8976  df-cda 9203  df-pnf 10289  df-mnf 10290  df-xr 10291  df-ltxr 10292  df-le 10293  df-sub 10481  df-neg 10482  df-nn 11234  df-n0 11506  df-xnn0 11577  df-z 11591  df-uz 11901  df-fz 12541  df-hash 13333
This theorem is referenced by:  hashprlei  13463  hashtplei  13479  kur14lem8  31524
  Copyright terms: Public domain W3C validator