![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashunlei | Structured version Visualization version GIF version |
Description: Get an upper bound on a concretely specified finite set. Induction step: union of two finite bounded sets. (Contributed by Mario Carneiro, 11-Feb-2015.) |
Ref | Expression |
---|---|
hashunlei.c | ⊢ 𝐶 = (𝐴 ∪ 𝐵) |
hashunlei.a | ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) |
hashunlei.b | ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) |
hashunlei.k | ⊢ 𝐾 ∈ ℕ0 |
hashunlei.m | ⊢ 𝑀 ∈ ℕ0 |
hashunlei.n | ⊢ (𝐾 + 𝑀) = 𝑁 |
Ref | Expression |
---|---|
hashunlei | ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashunlei.c | . . 3 ⊢ 𝐶 = (𝐴 ∪ 𝐵) | |
2 | hashunlei.a | . . . . 5 ⊢ (𝐴 ∈ Fin ∧ (♯‘𝐴) ≤ 𝐾) | |
3 | 2 | simpli 476 | . . . 4 ⊢ 𝐴 ∈ Fin |
4 | hashunlei.b | . . . . 5 ⊢ (𝐵 ∈ Fin ∧ (♯‘𝐵) ≤ 𝑀) | |
5 | 4 | simpli 476 | . . . 4 ⊢ 𝐵 ∈ Fin |
6 | unfi 8395 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∪ 𝐵) ∈ Fin) | |
7 | 3, 5, 6 | mp2an 710 | . . 3 ⊢ (𝐴 ∪ 𝐵) ∈ Fin |
8 | 1, 7 | eqeltri 2836 | . 2 ⊢ 𝐶 ∈ Fin |
9 | 1 | fveq2i 6357 | . . . 4 ⊢ (♯‘𝐶) = (♯‘(𝐴 ∪ 𝐵)) |
10 | hashun2 13385 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵))) | |
11 | 3, 5, 10 | mp2an 710 | . . . 4 ⊢ (♯‘(𝐴 ∪ 𝐵)) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
12 | 9, 11 | eqbrtri 4826 | . . 3 ⊢ (♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) |
13 | 2 | simpri 481 | . . . . 5 ⊢ (♯‘𝐴) ≤ 𝐾 |
14 | 4 | simpri 481 | . . . . 5 ⊢ (♯‘𝐵) ≤ 𝑀 |
15 | hashcl 13360 | . . . . . . . 8 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | 3, 15 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐴) ∈ ℕ0 |
17 | 16 | nn0rei 11516 | . . . . . 6 ⊢ (♯‘𝐴) ∈ ℝ |
18 | hashcl 13360 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
19 | 5, 18 | ax-mp 5 | . . . . . . 7 ⊢ (♯‘𝐵) ∈ ℕ0 |
20 | 19 | nn0rei 11516 | . . . . . 6 ⊢ (♯‘𝐵) ∈ ℝ |
21 | hashunlei.k | . . . . . . 7 ⊢ 𝐾 ∈ ℕ0 | |
22 | 21 | nn0rei 11516 | . . . . . 6 ⊢ 𝐾 ∈ ℝ |
23 | hashunlei.m | . . . . . . 7 ⊢ 𝑀 ∈ ℕ0 | |
24 | 23 | nn0rei 11516 | . . . . . 6 ⊢ 𝑀 ∈ ℝ |
25 | 17, 20, 22, 24 | le2addi 10804 | . . . . 5 ⊢ (((♯‘𝐴) ≤ 𝐾 ∧ (♯‘𝐵) ≤ 𝑀) → ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀)) |
26 | 13, 14, 25 | mp2an 710 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ (𝐾 + 𝑀) |
27 | hashunlei.n | . . . 4 ⊢ (𝐾 + 𝑀) = 𝑁 | |
28 | 26, 27 | breqtri 4830 | . . 3 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁 |
29 | hashcl 13360 | . . . . . 6 ⊢ (𝐶 ∈ Fin → (♯‘𝐶) ∈ ℕ0) | |
30 | 8, 29 | ax-mp 5 | . . . . 5 ⊢ (♯‘𝐶) ∈ ℕ0 |
31 | 30 | nn0rei 11516 | . . . 4 ⊢ (♯‘𝐶) ∈ ℝ |
32 | 17, 20 | readdcli 10266 | . . . 4 ⊢ ((♯‘𝐴) + (♯‘𝐵)) ∈ ℝ |
33 | 22, 24 | readdcli 10266 | . . . . 5 ⊢ (𝐾 + 𝑀) ∈ ℝ |
34 | 27, 33 | eqeltrri 2837 | . . . 4 ⊢ 𝑁 ∈ ℝ |
35 | 31, 32, 34 | letri 10379 | . . 3 ⊢ (((♯‘𝐶) ≤ ((♯‘𝐴) + (♯‘𝐵)) ∧ ((♯‘𝐴) + (♯‘𝐵)) ≤ 𝑁) → (♯‘𝐶) ≤ 𝑁) |
36 | 12, 28, 35 | mp2an 710 | . 2 ⊢ (♯‘𝐶) ≤ 𝑁 |
37 | 8, 36 | pm3.2i 470 | 1 ⊢ (𝐶 ∈ Fin ∧ (♯‘𝐶) ≤ 𝑁) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 383 = wceq 1632 ∈ wcel 2140 ∪ cun 3714 class class class wbr 4805 ‘cfv 6050 (class class class)co 6815 Fincfn 8124 ℝcr 10148 + caddc 10152 ≤ cle 10288 ℕ0cn0 11505 ♯chash 13332 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1989 ax-6 2055 ax-7 2091 ax-8 2142 ax-9 2149 ax-10 2169 ax-11 2184 ax-12 2197 ax-13 2392 ax-ext 2741 ax-rep 4924 ax-sep 4934 ax-nul 4942 ax-pow 4993 ax-pr 5056 ax-un 7116 ax-cnex 10205 ax-resscn 10206 ax-1cn 10207 ax-icn 10208 ax-addcl 10209 ax-addrcl 10210 ax-mulcl 10211 ax-mulrcl 10212 ax-mulcom 10213 ax-addass 10214 ax-mulass 10215 ax-distr 10216 ax-i2m1 10217 ax-1ne0 10218 ax-1rid 10219 ax-rnegex 10220 ax-rrecex 10221 ax-cnre 10222 ax-pre-lttri 10223 ax-pre-lttrn 10224 ax-pre-ltadd 10225 ax-pre-mulgt0 10226 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2048 df-eu 2612 df-mo 2613 df-clab 2748 df-cleq 2754 df-clel 2757 df-nfc 2892 df-ne 2934 df-nel 3037 df-ral 3056 df-rex 3057 df-reu 3058 df-rmo 3059 df-rab 3060 df-v 3343 df-sbc 3578 df-csb 3676 df-dif 3719 df-un 3721 df-in 3723 df-ss 3730 df-pss 3732 df-nul 4060 df-if 4232 df-pw 4305 df-sn 4323 df-pr 4325 df-tp 4327 df-op 4329 df-uni 4590 df-int 4629 df-iun 4675 df-br 4806 df-opab 4866 df-mpt 4883 df-tr 4906 df-id 5175 df-eprel 5180 df-po 5188 df-so 5189 df-fr 5226 df-we 5228 df-xp 5273 df-rel 5274 df-cnv 5275 df-co 5276 df-dm 5277 df-rn 5278 df-res 5279 df-ima 5280 df-pred 5842 df-ord 5888 df-on 5889 df-lim 5890 df-suc 5891 df-iota 6013 df-fun 6052 df-fn 6053 df-f 6054 df-f1 6055 df-fo 6056 df-f1o 6057 df-fv 6058 df-riota 6776 df-ov 6818 df-oprab 6819 df-mpt2 6820 df-om 7233 df-1st 7335 df-2nd 7336 df-wrecs 7578 df-recs 7639 df-rdg 7677 df-1o 7731 df-oadd 7735 df-er 7914 df-en 8125 df-dom 8126 df-sdom 8127 df-fin 8128 df-card 8976 df-cda 9203 df-pnf 10289 df-mnf 10290 df-xr 10291 df-ltxr 10292 df-le 10293 df-sub 10481 df-neg 10482 df-nn 11234 df-n0 11506 df-xnn0 11577 df-z 11591 df-uz 11901 df-fz 12541 df-hash 13333 |
This theorem is referenced by: hashprlei 13463 hashtplei 13479 kur14lem8 31524 |
Copyright terms: Public domain | W3C validator |