Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashun3 Structured version   Visualization version   GIF version

Theorem hashun3 13365
 Description: The size of the union of finite sets is the sum of their sizes minus the size of the intersection. (Contributed by Mario Carneiro, 6-Aug-2017.)
Assertion
Ref Expression
hashun3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))

Proof of Theorem hashun3
StepHypRef Expression
1 diffi 8357 . . . . . . 7 (𝐵 ∈ Fin → (𝐵𝐴) ∈ Fin)
21adantl 473 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐵𝐴) ∈ Fin)
3 simpl 474 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → 𝐴 ∈ Fin)
4 inss1 3976 . . . . . . 7 (𝐴𝐵) ⊆ 𝐴
5 ssfi 8345 . . . . . . 7 ((𝐴 ∈ Fin ∧ (𝐴𝐵) ⊆ 𝐴) → (𝐴𝐵) ∈ Fin)
63, 4, 5sylancl 697 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴𝐵) ∈ Fin)
7 sslin 3982 . . . . . . . . 9 ((𝐴𝐵) ⊆ 𝐴 → ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴))
84, 7ax-mp 5 . . . . . . . 8 ((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴)
9 incom 3948 . . . . . . . . 9 ((𝐵𝐴) ∩ 𝐴) = (𝐴 ∩ (𝐵𝐴))
10 disjdif 4184 . . . . . . . . 9 (𝐴 ∩ (𝐵𝐴)) = ∅
119, 10eqtri 2782 . . . . . . . 8 ((𝐵𝐴) ∩ 𝐴) = ∅
12 sseq0 4118 . . . . . . . 8 ((((𝐵𝐴) ∩ (𝐴𝐵)) ⊆ ((𝐵𝐴) ∩ 𝐴) ∧ ((𝐵𝐴) ∩ 𝐴) = ∅) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
138, 11, 12mp2an 710 . . . . . . 7 ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅
1413a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅)
15 hashun 13363 . . . . . 6 (((𝐵𝐴) ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ ((𝐵𝐴) ∩ (𝐴𝐵)) = ∅) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
162, 6, 14, 15syl3anc 1477 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))))
17 incom 3948 . . . . . . . . 9 (𝐴𝐵) = (𝐵𝐴)
1817uneq2i 3907 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐴𝐵)) = ((𝐵𝐴) ∪ (𝐵𝐴))
19 uncom 3900 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = ((𝐵𝐴) ∪ (𝐵𝐴))
20 inundif 4190 . . . . . . . 8 ((𝐵𝐴) ∪ (𝐵𝐴)) = 𝐵
2118, 19, 203eqtri 2786 . . . . . . 7 ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵
2221a1i 11 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((𝐵𝐴) ∪ (𝐴𝐵)) = 𝐵)
2322fveq2d 6356 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘((𝐵𝐴) ∪ (𝐴𝐵))) = (♯‘𝐵))
2416, 23eqtr3d 2796 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵))
25 hashcl 13339 . . . . . . 7 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
2625adantl 473 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℕ0)
2726nn0cnd 11545 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐵) ∈ ℂ)
28 hashcl 13339 . . . . . . 7 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
296, 28syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℕ0)
3029nn0cnd 11545 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) ∈ ℂ)
31 hashcl 13339 . . . . . . 7 ((𝐵𝐴) ∈ Fin → (♯‘(𝐵𝐴)) ∈ ℕ0)
322, 31syl 17 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℕ0)
3332nn0cnd 11545 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐵𝐴)) ∈ ℂ)
3427, 30, 33subadd2d 10603 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)) ↔ ((♯‘(𝐵𝐴)) + (♯‘(𝐴𝐵))) = (♯‘𝐵)))
3524, 34mpbird 247 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐵) − (♯‘(𝐴𝐵))) = (♯‘(𝐵𝐴)))
3635oveq2d 6829 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
37 hashcl 13339 . . . . 5 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
3837adantr 472 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℕ0)
3938nn0cnd 11545 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘𝐴) ∈ ℂ)
4039, 27, 30addsubassd 10604 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))) = ((♯‘𝐴) + ((♯‘𝐵) − (♯‘(𝐴𝐵)))))
41 undif2 4188 . . . 4 (𝐴 ∪ (𝐵𝐴)) = (𝐴𝐵)
4241fveq2i 6355 . . 3 (♯‘(𝐴 ∪ (𝐵𝐴))) = (♯‘(𝐴𝐵))
4310a1i 11 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (𝐴 ∩ (𝐵𝐴)) = ∅)
44 hashun 13363 . . . 4 ((𝐴 ∈ Fin ∧ (𝐵𝐴) ∈ Fin ∧ (𝐴 ∩ (𝐵𝐴)) = ∅) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
453, 2, 43, 44syl3anc 1477 . . 3 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴 ∪ (𝐵𝐴))) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4642, 45syl5eqr 2808 . 2 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) + (♯‘(𝐵𝐴))))
4736, 40, 463eqtr4rd 2805 1 ((𝐴 ∈ Fin ∧ 𝐵 ∈ Fin) → (♯‘(𝐴𝐵)) = (((♯‘𝐴) + (♯‘𝐵)) − (♯‘(𝐴𝐵))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 383   = wceq 1632   ∈ wcel 2139   ∖ cdif 3712   ∪ cun 3713   ∩ cin 3714   ⊆ wss 3715  ∅c0 4058  ‘cfv 6049  (class class class)co 6813  Fincfn 8121   + caddc 10131   − cmin 10458  ℕ0cn0 11484  ♯chash 13311 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205 This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-hash 13312 This theorem is referenced by:  incexclem  14767
 Copyright terms: Public domain W3C validator