MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashssdif Structured version   Visualization version   GIF version

Theorem hashssdif 13392
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.)
Assertion
Ref Expression
hashssdif ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))

Proof of Theorem hashssdif
StepHypRef Expression
1 ssfi 8345 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → 𝐵 ∈ Fin)
2 diffi 8357 . . . . . . 7 (𝐴 ∈ Fin → (𝐴𝐵) ∈ Fin)
3 disjdif 4184 . . . . . . . 8 (𝐵 ∩ (𝐴𝐵)) = ∅
4 hashun 13363 . . . . . . . 8 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
53, 4mp3an3 1562 . . . . . . 7 ((𝐵 ∈ Fin ∧ (𝐴𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
61, 2, 5syl2an 495 . . . . . 6 (((𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
76anabss1 890 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
8 undif 4193 . . . . . . . . 9 (𝐵𝐴 ↔ (𝐵 ∪ (𝐴𝐵)) = 𝐴)
98biimpi 206 . . . . . . . 8 (𝐵𝐴 → (𝐵 ∪ (𝐴𝐵)) = 𝐴)
109fveq2d 6356 . . . . . . 7 (𝐵𝐴 → (♯‘(𝐵 ∪ (𝐴𝐵))) = (♯‘𝐴))
1110eqeq1d 2762 . . . . . 6 (𝐵𝐴 → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
1211adantl 473 . . . . 5 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘(𝐵 ∪ (𝐴𝐵))) = ((♯‘𝐵) + (♯‘(𝐴𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵)))))
137, 12mpbid 222 . . . 4 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴𝐵))))
1413eqcomd 2766 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴))
15 hashcl 13339 . . . . . . 7 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0)
1615nn0cnd 11545 . . . . . 6 (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ)
17 hashcl 13339 . . . . . . . 8 (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0)
181, 17syl 17 . . . . . . 7 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℕ0)
1918nn0cnd 11545 . . . . . 6 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘𝐵) ∈ ℂ)
20 hashcl 13339 . . . . . . . 8 ((𝐴𝐵) ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
212, 20syl 17 . . . . . . 7 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℕ0)
2221nn0cnd 11545 . . . . . 6 (𝐴 ∈ Fin → (♯‘(𝐴𝐵)) ∈ ℂ)
23 subadd 10476 . . . . . 6 (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2416, 19, 22, 23syl3an 1164 . . . . 5 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
25243anidm13 1531 . . . 4 ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2625anabss5 892 . . 3 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴𝐵))) = (♯‘𝐴)))
2714, 26mpbird 247 . 2 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴𝐵)))
2827eqcomd 2766 1 ((𝐴 ∈ Fin ∧ 𝐵𝐴) → (♯‘(𝐴𝐵)) = ((♯‘𝐴) − (♯‘𝐵)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 196  wa 383   = wceq 1632  wcel 2139  cdif 3712  cun 3713  cin 3714  wss 3715  c0 4058  cfv 6049  (class class class)co 6813  Fincfn 8121  cc 10126   + caddc 10131  cmin 10458  0cn0 11484  chash 13311
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7114  ax-cnex 10184  ax-resscn 10185  ax-1cn 10186  ax-icn 10187  ax-addcl 10188  ax-addrcl 10189  ax-mulcl 10190  ax-mulrcl 10191  ax-mulcom 10192  ax-addass 10193  ax-mulass 10194  ax-distr 10195  ax-i2m1 10196  ax-1ne0 10197  ax-1rid 10198  ax-rnegex 10199  ax-rrecex 10200  ax-cnre 10201  ax-pre-lttri 10202  ax-pre-lttrn 10203  ax-pre-ltadd 10204  ax-pre-mulgt0 10205
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6774  df-ov 6816  df-oprab 6817  df-mpt2 6818  df-om 7231  df-wrecs 7576  df-recs 7637  df-rdg 7675  df-1o 7729  df-oadd 7733  df-er 7911  df-en 8122  df-dom 8123  df-sdom 8124  df-fin 8125  df-card 8955  df-cda 9182  df-pnf 10268  df-mnf 10269  df-xr 10270  df-ltxr 10271  df-le 10272  df-sub 10460  df-neg 10461  df-nn 11213  df-n0 11485  df-z 11570  df-uz 11880  df-hash 13312
This theorem is referenced by:  hashdif  13393  hashdifsn  13394  hashreshashfun  13418  brfi1indlem  13470  uvtxnm1nbgr  26509  clwwlknclwwlkdifnum  27101  clwwlknclwwlkdifnumOLD  27103  ballotlemfmpn  30865  ballotth  30908  poimirlem26  33748  poimirlem27  33749
  Copyright terms: Public domain W3C validator