![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashssdif | Structured version Visualization version GIF version |
Description: The size of the difference of a finite set and a subset is the set's size minus the subset's. (Contributed by Steve Rodriguez, 24-Oct-2015.) |
Ref | Expression |
---|---|
hashssdif | ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssfi 8345 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → 𝐵 ∈ Fin) | |
2 | diffi 8357 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (𝐴 ∖ 𝐵) ∈ Fin) | |
3 | disjdif 4184 | . . . . . . . 8 ⊢ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅ | |
4 | hashun 13363 | . . . . . . . 8 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin ∧ (𝐵 ∩ (𝐴 ∖ 𝐵)) = ∅) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) | |
5 | 3, 4 | mp3an3 1562 | . . . . . . 7 ⊢ ((𝐵 ∈ Fin ∧ (𝐴 ∖ 𝐵) ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
6 | 1, 2, 5 | syl2an 495 | . . . . . 6 ⊢ (((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
7 | 6 | anabss1 890 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
8 | undif 4193 | . . . . . . . . 9 ⊢ (𝐵 ⊆ 𝐴 ↔ (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) | |
9 | 8 | biimpi 206 | . . . . . . . 8 ⊢ (𝐵 ⊆ 𝐴 → (𝐵 ∪ (𝐴 ∖ 𝐵)) = 𝐴) |
10 | 9 | fveq2d 6356 | . . . . . . 7 ⊢ (𝐵 ⊆ 𝐴 → (♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = (♯‘𝐴)) |
11 | 10 | eqeq1d 2762 | . . . . . 6 ⊢ (𝐵 ⊆ 𝐴 → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
12 | 11 | adantl 473 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘(𝐵 ∪ (𝐴 ∖ 𝐵))) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) ↔ (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))))) |
13 | 7, 12 | mpbid 222 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐴) = ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵)))) |
14 | 13 | eqcomd 2766 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴)) |
15 | hashcl 13339 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
16 | 15 | nn0cnd 11545 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℂ) |
17 | hashcl 13339 | . . . . . . . 8 ⊢ (𝐵 ∈ Fin → (♯‘𝐵) ∈ ℕ0) | |
18 | 1, 17 | syl 17 | . . . . . . 7 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℕ0) |
19 | 18 | nn0cnd 11545 | . . . . . 6 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘𝐵) ∈ ℂ) |
20 | hashcl 13339 | . . . . . . . 8 ⊢ ((𝐴 ∖ 𝐵) ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) | |
21 | 2, 20 | syl 17 | . . . . . . 7 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℕ0) |
22 | 21 | nn0cnd 11545 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) |
23 | subadd 10476 | . . . . . 6 ⊢ (((♯‘𝐴) ∈ ℂ ∧ (♯‘𝐵) ∈ ℂ ∧ (♯‘(𝐴 ∖ 𝐵)) ∈ ℂ) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) | |
24 | 16, 19, 22, 23 | syl3an 1164 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) ∧ 𝐴 ∈ Fin) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
25 | 24 | 3anidm13 1531 | . . . 4 ⊢ ((𝐴 ∈ Fin ∧ (𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴)) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
26 | 25 | anabss5 892 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵)) ↔ ((♯‘𝐵) + (♯‘(𝐴 ∖ 𝐵))) = (♯‘𝐴))) |
27 | 14, 26 | mpbird 247 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → ((♯‘𝐴) − (♯‘𝐵)) = (♯‘(𝐴 ∖ 𝐵))) |
28 | 27 | eqcomd 2766 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝐵 ⊆ 𝐴) → (♯‘(𝐴 ∖ 𝐵)) = ((♯‘𝐴) − (♯‘𝐵))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ∖ cdif 3712 ∪ cun 3713 ∩ cin 3714 ⊆ wss 3715 ∅c0 4058 ‘cfv 6049 (class class class)co 6813 Fincfn 8121 ℂcc 10126 + caddc 10131 − cmin 10458 ℕ0cn0 11484 ♯chash 13311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7114 ax-cnex 10184 ax-resscn 10185 ax-1cn 10186 ax-icn 10187 ax-addcl 10188 ax-addrcl 10189 ax-mulcl 10190 ax-mulrcl 10191 ax-mulcom 10192 ax-addass 10193 ax-mulass 10194 ax-distr 10195 ax-i2m1 10196 ax-1ne0 10197 ax-1rid 10198 ax-rnegex 10199 ax-rrecex 10200 ax-cnre 10201 ax-pre-lttri 10202 ax-pre-lttrn 10203 ax-pre-ltadd 10204 ax-pre-mulgt0 10205 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6774 df-ov 6816 df-oprab 6817 df-mpt2 6818 df-om 7231 df-wrecs 7576 df-recs 7637 df-rdg 7675 df-1o 7729 df-oadd 7733 df-er 7911 df-en 8122 df-dom 8123 df-sdom 8124 df-fin 8125 df-card 8955 df-cda 9182 df-pnf 10268 df-mnf 10269 df-xr 10270 df-ltxr 10271 df-le 10272 df-sub 10460 df-neg 10461 df-nn 11213 df-n0 11485 df-z 11570 df-uz 11880 df-hash 13312 |
This theorem is referenced by: hashdif 13393 hashdifsn 13394 hashreshashfun 13418 brfi1indlem 13470 uvtxnm1nbgr 26509 clwwlknclwwlkdifnum 27101 clwwlknclwwlkdifnumOLD 27103 ballotlemfmpn 30865 ballotth 30908 poimirlem26 33748 poimirlem27 33749 |
Copyright terms: Public domain | W3C validator |