Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashrabsn01 Structured version   Visualization version   GIF version

Theorem hashrabsn01 13364
 Description: The size of a restricted class abstraction restricted to a singleton is either 0 or 1. (Contributed by Alexander van der Vekens, 3-Sep-2018.)
Assertion
Ref Expression
hashrabsn01 ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
Distinct variable group:   𝑥,𝐴
Allowed substitution hints:   𝜑(𝑥)   𝑁(𝑥)

Proof of Theorem hashrabsn01
StepHypRef Expression
1 eqid 2771 . 2 {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑}
2 rabrsn 4396 . 2 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝑥 ∈ {𝐴} ∣ 𝜑} → ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}))
3 fveq2 6333 . . . . 5 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (♯‘∅))
43eqeq1d 2773 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘∅) = 𝑁))
5 eqcom 2778 . . . . . . 7 ((♯‘∅) = 𝑁𝑁 = (♯‘∅))
65biimpi 206 . . . . . 6 ((♯‘∅) = 𝑁𝑁 = (♯‘∅))
7 hash0 13360 . . . . . 6 (♯‘∅) = 0
86, 7syl6eq 2821 . . . . 5 ((♯‘∅) = 𝑁𝑁 = 0)
98orcd 862 . . . 4 ((♯‘∅) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
104, 9syl6bi 243 . . 3 ({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
11 fveq2 6333 . . . . 5 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → (♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = (♯‘{𝐴}))
1211eqeq1d 2773 . . . 4 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 ↔ (♯‘{𝐴}) = 𝑁))
13 eqcom 2778 . . . . . . . . 9 ((♯‘{𝐴}) = 𝑁𝑁 = (♯‘{𝐴}))
1413biimpi 206 . . . . . . . 8 ((♯‘{𝐴}) = 𝑁𝑁 = (♯‘{𝐴}))
15 hashsng 13361 . . . . . . . 8 (𝐴 ∈ V → (♯‘{𝐴}) = 1)
1614, 15sylan9eqr 2827 . . . . . . 7 ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → 𝑁 = 1)
1716olcd 863 . . . . . 6 ((𝐴 ∈ V ∧ (♯‘{𝐴}) = 𝑁) → (𝑁 = 0 ∨ 𝑁 = 1))
1817ex 397 . . . . 5 (𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
19 snprc 4390 . . . . . 6 𝐴 ∈ V ↔ {𝐴} = ∅)
20 fveq2 6333 . . . . . . . 8 ({𝐴} = ∅ → (♯‘{𝐴}) = (♯‘∅))
2120eqeq1d 2773 . . . . . . 7 ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 ↔ (♯‘∅) = 𝑁))
2221, 9syl6bi 243 . . . . . 6 ({𝐴} = ∅ → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
2319, 22sylbi 207 . . . . 5 𝐴 ∈ V → ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
2418, 23pm2.61i 176 . . . 4 ((♯‘{𝐴}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
2512, 24syl6bi 243 . . 3 ({𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴} → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
2610, 25jaoi 846 . 2 (({𝑥 ∈ {𝐴} ∣ 𝜑} = ∅ ∨ {𝑥 ∈ {𝐴} ∣ 𝜑} = {𝐴}) → ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1)))
271, 2, 26mp2b 10 1 ((♯‘{𝑥 ∈ {𝐴} ∣ 𝜑}) = 𝑁 → (𝑁 = 0 ∨ 𝑁 = 1))
 Colors of variables: wff setvar class Syntax hints:  ¬ wn 3   → wi 4   ∧ wa 382   ∨ wo 836   = wceq 1631   ∈ wcel 2145  {crab 3065  Vcvv 3351  ∅c0 4063  {csn 4317  ‘cfv 6030  0cc0 10142  1c1 10143  ♯chash 13321 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-sep 4916  ax-nul 4924  ax-pow 4975  ax-pr 5035  ax-un 7100  ax-cnex 10198  ax-resscn 10199  ax-1cn 10200  ax-icn 10201  ax-addcl 10202  ax-addrcl 10203  ax-mulcl 10204  ax-mulrcl 10205  ax-mulcom 10206  ax-addass 10207  ax-mulass 10208  ax-distr 10209  ax-i2m1 10210  ax-1ne0 10211  ax-1rid 10212  ax-rnegex 10213  ax-rrecex 10214  ax-cnre 10215  ax-pre-lttri 10216  ax-pre-lttrn 10217  ax-pre-ltadd 10218  ax-pre-mulgt0 10219 This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4576  df-int 4613  df-iun 4657  df-br 4788  df-opab 4848  df-mpt 4865  df-tr 4888  df-id 5158  df-eprel 5163  df-po 5171  df-so 5172  df-fr 5209  df-we 5211  df-xp 5256  df-rel 5257  df-cnv 5258  df-co 5259  df-dm 5260  df-rn 5261  df-res 5262  df-ima 5263  df-pred 5822  df-ord 5868  df-on 5869  df-lim 5870  df-suc 5871  df-iota 5993  df-fun 6032  df-fn 6033  df-f 6034  df-f1 6035  df-fo 6036  df-f1o 6037  df-fv 6038  df-riota 6757  df-ov 6799  df-oprab 6800  df-mpt2 6801  df-om 7217  df-1st 7319  df-2nd 7320  df-wrecs 7563  df-recs 7625  df-rdg 7663  df-1o 7717  df-er 7900  df-en 8114  df-dom 8115  df-sdom 8116  df-fin 8117  df-card 8969  df-pnf 10282  df-mnf 10283  df-xr 10284  df-ltxr 10285  df-le 10286  df-sub 10474  df-neg 10475  df-nn 11227  df-n0 11500  df-z 11585  df-uz 11894  df-fz 12534  df-hash 13322 This theorem is referenced by: (None)
 Copyright terms: Public domain W3C validator