![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashpw | Structured version Visualization version GIF version |
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012.) (Proof shortened by Mario Carneiro, 5-Aug-2014.) |
Ref | Expression |
---|---|
hashpw | ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | pweq 4298 | . . . 4 ⊢ (𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴) | |
2 | 1 | fveq2d 6336 | . . 3 ⊢ (𝑥 = 𝐴 → (♯‘𝒫 𝑥) = (♯‘𝒫 𝐴)) |
3 | fveq2 6332 | . . . 4 ⊢ (𝑥 = 𝐴 → (♯‘𝑥) = (♯‘𝐴)) | |
4 | 3 | oveq2d 6808 | . . 3 ⊢ (𝑥 = 𝐴 → (2↑(♯‘𝑥)) = (2↑(♯‘𝐴))) |
5 | 2, 4 | eqeq12d 2785 | . 2 ⊢ (𝑥 = 𝐴 → ((♯‘𝒫 𝑥) = (2↑(♯‘𝑥)) ↔ (♯‘𝒫 𝐴) = (2↑(♯‘𝐴)))) |
6 | vex 3352 | . . . . 5 ⊢ 𝑥 ∈ V | |
7 | 6 | pw2en 8222 | . . . 4 ⊢ 𝒫 𝑥 ≈ (2𝑜 ↑𝑚 𝑥) |
8 | pwfi 8416 | . . . . . 6 ⊢ (𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin) | |
9 | 8 | biimpi 206 | . . . . 5 ⊢ (𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin) |
10 | df2o2 7727 | . . . . . . 7 ⊢ 2𝑜 = {∅, {∅}} | |
11 | prfi 8390 | . . . . . . 7 ⊢ {∅, {∅}} ∈ Fin | |
12 | 10, 11 | eqeltri 2845 | . . . . . 6 ⊢ 2𝑜 ∈ Fin |
13 | mapfi 8417 | . . . . . 6 ⊢ ((2𝑜 ∈ Fin ∧ 𝑥 ∈ Fin) → (2𝑜 ↑𝑚 𝑥) ∈ Fin) | |
14 | 12, 13 | mpan 662 | . . . . 5 ⊢ (𝑥 ∈ Fin → (2𝑜 ↑𝑚 𝑥) ∈ Fin) |
15 | hashen 13338 | . . . . 5 ⊢ ((𝒫 𝑥 ∈ Fin ∧ (2𝑜 ↑𝑚 𝑥) ∈ Fin) → ((♯‘𝒫 𝑥) = (♯‘(2𝑜 ↑𝑚 𝑥)) ↔ 𝒫 𝑥 ≈ (2𝑜 ↑𝑚 𝑥))) | |
16 | 9, 14, 15 | syl2anc 565 | . . . 4 ⊢ (𝑥 ∈ Fin → ((♯‘𝒫 𝑥) = (♯‘(2𝑜 ↑𝑚 𝑥)) ↔ 𝒫 𝑥 ≈ (2𝑜 ↑𝑚 𝑥))) |
17 | 7, 16 | mpbiri 248 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (♯‘(2𝑜 ↑𝑚 𝑥))) |
18 | hashmap 13423 | . . . . 5 ⊢ ((2𝑜 ∈ Fin ∧ 𝑥 ∈ Fin) → (♯‘(2𝑜 ↑𝑚 𝑥)) = ((♯‘2𝑜)↑(♯‘𝑥))) | |
19 | 12, 18 | mpan 662 | . . . 4 ⊢ (𝑥 ∈ Fin → (♯‘(2𝑜 ↑𝑚 𝑥)) = ((♯‘2𝑜)↑(♯‘𝑥))) |
20 | hash2 13394 | . . . . 5 ⊢ (♯‘2𝑜) = 2 | |
21 | 20 | oveq1i 6802 | . . . 4 ⊢ ((♯‘2𝑜)↑(♯‘𝑥)) = (2↑(♯‘𝑥)) |
22 | 19, 21 | syl6eq 2820 | . . 3 ⊢ (𝑥 ∈ Fin → (♯‘(2𝑜 ↑𝑚 𝑥)) = (2↑(♯‘𝑥))) |
23 | 17, 22 | eqtrd 2804 | . 2 ⊢ (𝑥 ∈ Fin → (♯‘𝒫 𝑥) = (2↑(♯‘𝑥))) |
24 | 5, 23 | vtoclga 3421 | 1 ⊢ (𝐴 ∈ Fin → (♯‘𝒫 𝐴) = (2↑(♯‘𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 = wceq 1630 ∈ wcel 2144 ∅c0 4061 𝒫 cpw 4295 {csn 4314 {cpr 4316 class class class wbr 4784 ‘cfv 6031 (class class class)co 6792 2𝑜c2o 7706 ↑𝑚 cmap 8008 ≈ cen 8105 Fincfn 8108 2c2 11271 ↑cexp 13066 ♯chash 13320 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1869 ax-4 1884 ax-5 1990 ax-6 2056 ax-7 2092 ax-8 2146 ax-9 2153 ax-10 2173 ax-11 2189 ax-12 2202 ax-13 2407 ax-ext 2750 ax-rep 4902 ax-sep 4912 ax-nul 4920 ax-pow 4971 ax-pr 5034 ax-un 7095 ax-cnex 10193 ax-resscn 10194 ax-1cn 10195 ax-icn 10196 ax-addcl 10197 ax-addrcl 10198 ax-mulcl 10199 ax-mulrcl 10200 ax-mulcom 10201 ax-addass 10202 ax-mulass 10203 ax-distr 10204 ax-i2m1 10205 ax-1ne0 10206 ax-1rid 10207 ax-rnegex 10208 ax-rrecex 10209 ax-cnre 10210 ax-pre-lttri 10211 ax-pre-lttrn 10212 ax-pre-ltadd 10213 ax-pre-mulgt0 10214 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 827 df-3or 1071 df-3an 1072 df-tru 1633 df-ex 1852 df-nf 1857 df-sb 2049 df-eu 2621 df-mo 2622 df-clab 2757 df-cleq 2763 df-clel 2766 df-nfc 2901 df-ne 2943 df-nel 3046 df-ral 3065 df-rex 3066 df-reu 3067 df-rmo 3068 df-rab 3069 df-v 3351 df-sbc 3586 df-csb 3681 df-dif 3724 df-un 3726 df-in 3728 df-ss 3735 df-pss 3737 df-nul 4062 df-if 4224 df-pw 4297 df-sn 4315 df-pr 4317 df-tp 4319 df-op 4321 df-uni 4573 df-int 4610 df-iun 4654 df-br 4785 df-opab 4845 df-mpt 4862 df-tr 4885 df-id 5157 df-eprel 5162 df-po 5170 df-so 5171 df-fr 5208 df-we 5210 df-xp 5255 df-rel 5256 df-cnv 5257 df-co 5258 df-dm 5259 df-rn 5260 df-res 5261 df-ima 5262 df-pred 5823 df-ord 5869 df-on 5870 df-lim 5871 df-suc 5872 df-iota 5994 df-fun 6033 df-fn 6034 df-f 6035 df-f1 6036 df-fo 6037 df-f1o 6038 df-fv 6039 df-riota 6753 df-ov 6795 df-oprab 6796 df-mpt2 6797 df-om 7212 df-1st 7314 df-2nd 7315 df-wrecs 7558 df-recs 7620 df-rdg 7658 df-1o 7712 df-2o 7713 df-oadd 7716 df-er 7895 df-map 8010 df-pm 8011 df-en 8109 df-dom 8110 df-sdom 8111 df-fin 8112 df-card 8964 df-cda 9191 df-pnf 10277 df-mnf 10278 df-xr 10279 df-ltxr 10280 df-le 10281 df-sub 10469 df-neg 10470 df-nn 11222 df-2 11280 df-n0 11494 df-z 11579 df-uz 11888 df-fz 12533 df-seq 13008 df-exp 13067 df-hash 13321 |
This theorem is referenced by: ackbijnn 14766 |
Copyright terms: Public domain | W3C validator |