![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashprgOLD | Structured version Visualization version GIF version |
Description: Obsolete version of hashprg 13220 as of 18-Sep-2021. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Proof modification is discouraged.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hashprgOLD | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ≠ 𝐵 ↔ (#‘{𝐴, 𝐵}) = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 476 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 𝐵 ∈ 𝑉) | |
2 | elsni 4227 | . . . . . . 7 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
3 | 2 | eqcomd 2657 | . . . . . 6 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
4 | 3 | necon3ai 2848 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
5 | snfi 8079 | . . . . . 6 ⊢ {𝐴} ∈ Fin | |
6 | hashunsng 13219 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑉 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (#‘({𝐴} ∪ {𝐵})) = ((#‘{𝐴}) + 1))) | |
7 | 6 | imp 444 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑉 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (#‘({𝐴} ∪ {𝐵})) = ((#‘{𝐴}) + 1)) |
8 | 5, 7 | mpanr1 719 | . . . . 5 ⊢ ((𝐵 ∈ 𝑉 ∧ ¬ 𝐵 ∈ {𝐴}) → (#‘({𝐴} ∪ {𝐵})) = ((#‘{𝐴}) + 1)) |
9 | 1, 4, 8 | syl2an 493 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (#‘({𝐴} ∪ {𝐵})) = ((#‘{𝐴}) + 1)) |
10 | hashsng 13197 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (#‘{𝐴}) = 1) | |
11 | 10 | adantr 480 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (#‘{𝐴}) = 1) |
12 | 11 | adantr 480 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (#‘{𝐴}) = 1) |
13 | 12 | oveq1d 6705 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → ((#‘{𝐴}) + 1) = (1 + 1)) |
14 | 9, 13 | eqtrd 2685 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (#‘({𝐴} ∪ {𝐵})) = (1 + 1)) |
15 | df-pr 4213 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
16 | 15 | fveq2i 6232 | . . 3 ⊢ (#‘{𝐴, 𝐵}) = (#‘({𝐴} ∪ {𝐵})) |
17 | df-2 11117 | . . 3 ⊢ 2 = (1 + 1) | |
18 | 14, 16, 17 | 3eqtr4g 2710 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ 𝐴 ≠ 𝐵) → (#‘{𝐴, 𝐵}) = 2) |
19 | 1ne2 11278 | . . . . . . 7 ⊢ 1 ≠ 2 | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → 1 ≠ 2) |
21 | 11, 20 | eqnetrd 2890 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (#‘{𝐴}) ≠ 2) |
22 | dfsn2 4223 | . . . . . . . 8 ⊢ {𝐴} = {𝐴, 𝐴} | |
23 | preq2 4301 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
24 | 22, 23 | syl5req 2698 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
25 | 24 | fveq2d 6233 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (#‘{𝐴, 𝐵}) = (#‘{𝐴})) |
26 | 25 | neeq1d 2882 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((#‘{𝐴, 𝐵}) ≠ 2 ↔ (#‘{𝐴}) ≠ 2)) |
27 | 21, 26 | syl5ibrcom 237 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 = 𝐵 → (#‘{𝐴, 𝐵}) ≠ 2)) |
28 | 27 | necon2d 2846 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → ((#‘{𝐴, 𝐵}) = 2 → 𝐴 ≠ 𝐵)) |
29 | 28 | imp 444 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) ∧ (#‘{𝐴, 𝐵}) = 2) → 𝐴 ≠ 𝐵) |
30 | 18, 29 | impbida 895 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑉) → (𝐴 ≠ 𝐵 ↔ (#‘{𝐴, 𝐵}) = 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1523 ∈ wcel 2030 ≠ wne 2823 ∪ cun 3605 {csn 4210 {cpr 4212 ‘cfv 5926 (class class class)co 6690 Fincfn 7997 1c1 9975 + caddc 9977 2c2 11108 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |