![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashprg | Structured version Visualization version GIF version |
Description: The size of an unordered pair. (Contributed by Mario Carneiro, 27-Sep-2013.) (Revised by Mario Carneiro, 5-May-2016.) (Revised by AV, 18-Sep-2021.) |
Ref | Expression |
---|---|
hashprg | ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr 479 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 𝐵 ∈ 𝑊) | |
2 | elsni 4338 | . . . . . . 7 ⊢ (𝐵 ∈ {𝐴} → 𝐵 = 𝐴) | |
3 | 2 | eqcomd 2766 | . . . . . 6 ⊢ (𝐵 ∈ {𝐴} → 𝐴 = 𝐵) |
4 | 3 | necon3ai 2957 | . . . . 5 ⊢ (𝐴 ≠ 𝐵 → ¬ 𝐵 ∈ {𝐴}) |
5 | snfi 8205 | . . . . . 6 ⊢ {𝐴} ∈ Fin | |
6 | hashunsng 13393 | . . . . . . 7 ⊢ (𝐵 ∈ 𝑊 → (({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1))) | |
7 | 6 | imp 444 | . . . . . 6 ⊢ ((𝐵 ∈ 𝑊 ∧ ({𝐴} ∈ Fin ∧ ¬ 𝐵 ∈ {𝐴})) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)) |
8 | 5, 7 | mpanr1 721 | . . . . 5 ⊢ ((𝐵 ∈ 𝑊 ∧ ¬ 𝐵 ∈ {𝐴}) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)) |
9 | 1, 4, 8 | syl2an 495 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → (♯‘({𝐴} ∪ {𝐵})) = ((♯‘{𝐴}) + 1)) |
10 | hashsng 13371 | . . . . . . 7 ⊢ (𝐴 ∈ 𝑉 → (♯‘{𝐴}) = 1) | |
11 | 10 | adantr 472 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘{𝐴}) = 1) |
12 | 11 | adantr 472 | . . . . 5 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → (♯‘{𝐴}) = 1) |
13 | 12 | oveq1d 6829 | . . . 4 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → ((♯‘{𝐴}) + 1) = (1 + 1)) |
14 | 9, 13 | eqtrd 2794 | . . 3 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → (♯‘({𝐴} ∪ {𝐵})) = (1 + 1)) |
15 | df-pr 4324 | . . . 4 ⊢ {𝐴, 𝐵} = ({𝐴} ∪ {𝐵}) | |
16 | 15 | fveq2i 6356 | . . 3 ⊢ (♯‘{𝐴, 𝐵}) = (♯‘({𝐴} ∪ {𝐵})) |
17 | df-2 11291 | . . 3 ⊢ 2 = (1 + 1) | |
18 | 14, 16, 17 | 3eqtr4g 2819 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ 𝐴 ≠ 𝐵) → (♯‘{𝐴, 𝐵}) = 2) |
19 | 1ne2 11452 | . . . . . . 7 ⊢ 1 ≠ 2 | |
20 | 19 | a1i 11 | . . . . . 6 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → 1 ≠ 2) |
21 | 11, 20 | eqnetrd 2999 | . . . . 5 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (♯‘{𝐴}) ≠ 2) |
22 | dfsn2 4334 | . . . . . . . 8 ⊢ {𝐴} = {𝐴, 𝐴} | |
23 | preq2 4413 | . . . . . . . 8 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐴} = {𝐴, 𝐵}) | |
24 | 22, 23 | syl5req 2807 | . . . . . . 7 ⊢ (𝐴 = 𝐵 → {𝐴, 𝐵} = {𝐴}) |
25 | 24 | fveq2d 6357 | . . . . . 6 ⊢ (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) = (♯‘{𝐴})) |
26 | 25 | neeq1d 2991 | . . . . 5 ⊢ (𝐴 = 𝐵 → ((♯‘{𝐴, 𝐵}) ≠ 2 ↔ (♯‘{𝐴}) ≠ 2)) |
27 | 21, 26 | syl5ibrcom 237 | . . . 4 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 = 𝐵 → (♯‘{𝐴, 𝐵}) ≠ 2)) |
28 | 27 | necon2d 2955 | . . 3 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → ((♯‘{𝐴, 𝐵}) = 2 → 𝐴 ≠ 𝐵)) |
29 | 28 | imp 444 | . 2 ⊢ (((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) ∧ (♯‘{𝐴, 𝐵}) = 2) → 𝐴 ≠ 𝐵) |
30 | 18, 29 | impbida 913 | 1 ⊢ ((𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝐴 ≠ 𝐵 ↔ (♯‘{𝐴, 𝐵}) = 2)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 196 ∧ wa 383 = wceq 1632 ∈ wcel 2139 ≠ wne 2932 ∪ cun 3713 {csn 4321 {cpr 4323 ‘cfv 6049 (class class class)co 6814 Fincfn 8123 1c1 10149 + caddc 10151 2c2 11282 ♯chash 13331 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1871 ax-4 1886 ax-5 1988 ax-6 2054 ax-7 2090 ax-8 2141 ax-9 2148 ax-10 2168 ax-11 2183 ax-12 2196 ax-13 2391 ax-ext 2740 ax-rep 4923 ax-sep 4933 ax-nul 4941 ax-pow 4992 ax-pr 5055 ax-un 7115 ax-cnex 10204 ax-resscn 10205 ax-1cn 10206 ax-icn 10207 ax-addcl 10208 ax-addrcl 10209 ax-mulcl 10210 ax-mulrcl 10211 ax-mulcom 10212 ax-addass 10213 ax-mulass 10214 ax-distr 10215 ax-i2m1 10216 ax-1ne0 10217 ax-1rid 10218 ax-rnegex 10219 ax-rrecex 10220 ax-cnre 10221 ax-pre-lttri 10222 ax-pre-lttrn 10223 ax-pre-ltadd 10224 ax-pre-mulgt0 10225 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1635 df-ex 1854 df-nf 1859 df-sb 2047 df-eu 2611 df-mo 2612 df-clab 2747 df-cleq 2753 df-clel 2756 df-nfc 2891 df-ne 2933 df-nel 3036 df-ral 3055 df-rex 3056 df-reu 3057 df-rmo 3058 df-rab 3059 df-v 3342 df-sbc 3577 df-csb 3675 df-dif 3718 df-un 3720 df-in 3722 df-ss 3729 df-pss 3731 df-nul 4059 df-if 4231 df-pw 4304 df-sn 4322 df-pr 4324 df-tp 4326 df-op 4328 df-uni 4589 df-int 4628 df-iun 4674 df-br 4805 df-opab 4865 df-mpt 4882 df-tr 4905 df-id 5174 df-eprel 5179 df-po 5187 df-so 5188 df-fr 5225 df-we 5227 df-xp 5272 df-rel 5273 df-cnv 5274 df-co 5275 df-dm 5276 df-rn 5277 df-res 5278 df-ima 5279 df-pred 5841 df-ord 5887 df-on 5888 df-lim 5889 df-suc 5890 df-iota 6012 df-fun 6051 df-fn 6052 df-f 6053 df-f1 6054 df-fo 6055 df-f1o 6056 df-fv 6057 df-riota 6775 df-ov 6817 df-oprab 6818 df-mpt2 6819 df-om 7232 df-1st 7334 df-2nd 7335 df-wrecs 7577 df-recs 7638 df-rdg 7676 df-1o 7730 df-oadd 7734 df-er 7913 df-en 8124 df-dom 8125 df-sdom 8126 df-fin 8127 df-card 8975 df-cda 9202 df-pnf 10288 df-mnf 10289 df-xr 10290 df-ltxr 10291 df-le 10292 df-sub 10480 df-neg 10481 df-nn 11233 df-2 11291 df-n0 11505 df-z 11590 df-uz 11900 df-fz 12540 df-hash 13332 |
This theorem is referenced by: hashprb 13397 prhash2ex 13399 hashfun 13436 hash2exprb 13465 nehash2 13468 hashtpg 13479 elss2prb 13481 wrdlen2i 13907 isnzr2hash 19486 dchrisum0re 25422 upgrex 26207 umgrbi 26216 usgr1e 26357 usgrexmplef 26371 cusgrexilem2 26569 cusgrfilem1 26582 umgr2v2e 26652 vdegp1bi 26664 eulerpathpr 27413 coinflipprob 30871 subfacp1lem1 31489 poimirlem9 33749 fourierdlem54 40898 fourierdlem102 40946 fourierdlem103 40947 fourierdlem104 40948 fourierdlem114 40958 |
Copyright terms: Public domain | W3C validator |