MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashprb Structured version   Visualization version   GIF version

Theorem hashprb 13397
Description: The size of an unordered pair is 2 if and only if its elements are different sets. (Contributed by Alexander van der Vekens, 17-Jan-2018.)
Assertion
Ref Expression
hashprb ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2)

Proof of Theorem hashprb
StepHypRef Expression
1 hashprg 13394 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → (𝑀𝑁 ↔ (♯‘{𝑀, 𝑁}) = 2))
21biimp3a 1581 . 2 ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) → (♯‘{𝑀, 𝑁}) = 2)
3 elprchashprn2 13396 . . . 4 𝑀 ∈ V → ¬ (♯‘{𝑀, 𝑁}) = 2)
4 pm2.21 120 . . . 4 (¬ (♯‘{𝑀, 𝑁}) = 2 → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
53, 4syl 17 . . 3 𝑀 ∈ V → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
6 elprchashprn2 13396 . . . 4 𝑁 ∈ V → ¬ (♯‘{𝑁, 𝑀}) = 2)
7 prcom 4411 . . . . . . 7 {𝑁, 𝑀} = {𝑀, 𝑁}
87fveq2i 6356 . . . . . 6 (♯‘{𝑁, 𝑀}) = (♯‘{𝑀, 𝑁})
98eqeq1i 2765 . . . . 5 ((♯‘{𝑁, 𝑀}) = 2 ↔ (♯‘{𝑀, 𝑁}) = 2)
109, 4sylnbi 319 . . . 4 (¬ (♯‘{𝑁, 𝑀}) = 2 → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
116, 10syl 17 . . 3 𝑁 ∈ V → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
12 simpll 807 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑀 ∈ V)
13 simplr 809 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑁 ∈ V)
141biimpar 503 . . . . 5 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → 𝑀𝑁)
1512, 13, 143jca 1123 . . . 4 (((𝑀 ∈ V ∧ 𝑁 ∈ V) ∧ (♯‘{𝑀, 𝑁}) = 2) → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁))
1615ex 449 . . 3 ((𝑀 ∈ V ∧ 𝑁 ∈ V) → ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁)))
175, 11, 16ecase 1020 . 2 ((♯‘{𝑀, 𝑁}) = 2 → (𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁))
182, 17impbii 199 1 ((𝑀 ∈ V ∧ 𝑁 ∈ V ∧ 𝑀𝑁) ↔ (♯‘{𝑀, 𝑁}) = 2)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 383  w3a 1072   = wceq 1632  wcel 2139  wne 2932  Vcvv 3340  {cpr 4323  cfv 6049  2c2 11282  chash 13331
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1871  ax-4 1886  ax-5 1988  ax-6 2054  ax-7 2090  ax-8 2141  ax-9 2148  ax-10 2168  ax-11 2183  ax-12 2196  ax-13 2391  ax-ext 2740  ax-rep 4923  ax-sep 4933  ax-nul 4941  ax-pow 4992  ax-pr 5055  ax-un 7115  ax-cnex 10204  ax-resscn 10205  ax-1cn 10206  ax-icn 10207  ax-addcl 10208  ax-addrcl 10209  ax-mulcl 10210  ax-mulrcl 10211  ax-mulcom 10212  ax-addass 10213  ax-mulass 10214  ax-distr 10215  ax-i2m1 10216  ax-1ne0 10217  ax-1rid 10218  ax-rnegex 10219  ax-rrecex 10220  ax-cnre 10221  ax-pre-lttri 10222  ax-pre-lttrn 10223  ax-pre-ltadd 10224  ax-pre-mulgt0 10225
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1635  df-ex 1854  df-nf 1859  df-sb 2047  df-eu 2611  df-mo 2612  df-clab 2747  df-cleq 2753  df-clel 2756  df-nfc 2891  df-ne 2933  df-nel 3036  df-ral 3055  df-rex 3056  df-reu 3057  df-rmo 3058  df-rab 3059  df-v 3342  df-sbc 3577  df-csb 3675  df-dif 3718  df-un 3720  df-in 3722  df-ss 3729  df-pss 3731  df-nul 4059  df-if 4231  df-pw 4304  df-sn 4322  df-pr 4324  df-tp 4326  df-op 4328  df-uni 4589  df-int 4628  df-iun 4674  df-br 4805  df-opab 4865  df-mpt 4882  df-tr 4905  df-id 5174  df-eprel 5179  df-po 5187  df-so 5188  df-fr 5225  df-we 5227  df-xp 5272  df-rel 5273  df-cnv 5274  df-co 5275  df-dm 5276  df-rn 5277  df-res 5278  df-ima 5279  df-pred 5841  df-ord 5887  df-on 5888  df-lim 5889  df-suc 5890  df-iota 6012  df-fun 6051  df-fn 6052  df-f 6053  df-f1 6054  df-fo 6055  df-f1o 6056  df-fv 6057  df-riota 6775  df-ov 6817  df-oprab 6818  df-mpt2 6819  df-om 7232  df-1st 7334  df-2nd 7335  df-wrecs 7577  df-recs 7638  df-rdg 7676  df-1o 7730  df-oadd 7734  df-er 7913  df-en 8124  df-dom 8125  df-sdom 8126  df-fin 8127  df-card 8975  df-cda 9202  df-pnf 10288  df-mnf 10289  df-xr 10290  df-ltxr 10291  df-le 10292  df-sub 10480  df-neg 10481  df-nn 11233  df-2 11291  df-n0 11505  df-z 11590  df-uz 11900  df-fz 12540  df-hash 13332
This theorem is referenced by:  hashprdifel  13398  prsshashgt1  13410  symg2hash  18037  cplgr2vpr  26560
  Copyright terms: Public domain W3C validator