![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnncl | Structured version Visualization version GIF version |
Description: Positive natural closure of the hash function. (Contributed by Mario Carneiro, 16-Jan-2015.) |
Ref | Expression |
---|---|
hashnncl | ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nnne0 11237 | . . 3 ⊢ ((♯‘𝐴) ∈ ℕ → (♯‘𝐴) ≠ 0) | |
2 | hashcl 13331 | . . . . . 6 ⊢ (𝐴 ∈ Fin → (♯‘𝐴) ∈ ℕ0) | |
3 | elnn0 11478 | . . . . . 6 ⊢ ((♯‘𝐴) ∈ ℕ0 ↔ ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) | |
4 | 2, 3 | sylib 208 | . . . . 5 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ∨ (♯‘𝐴) = 0)) |
5 | 4 | ord 391 | . . . 4 ⊢ (𝐴 ∈ Fin → (¬ (♯‘𝐴) ∈ ℕ → (♯‘𝐴) = 0)) |
6 | 5 | necon1ad 2941 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 → (♯‘𝐴) ∈ ℕ)) |
7 | 1, 6 | impbid2 216 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ (♯‘𝐴) ≠ 0)) |
8 | hasheq0 13338 | . . 3 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) = 0 ↔ 𝐴 = ∅)) | |
9 | 8 | necon3bid 2968 | . 2 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ≠ 0 ↔ 𝐴 ≠ ∅)) |
10 | 7, 9 | bitrd 268 | 1 ⊢ (𝐴 ∈ Fin → ((♯‘𝐴) ∈ ℕ ↔ 𝐴 ≠ ∅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∨ wo 382 = wceq 1624 ∈ wcel 2131 ≠ wne 2924 ∅c0 4050 ‘cfv 6041 Fincfn 8113 0cc0 10120 ℕcn 11204 ℕ0cn0 11476 ♯chash 13303 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1863 ax-4 1878 ax-5 1980 ax-6 2046 ax-7 2082 ax-8 2133 ax-9 2140 ax-10 2160 ax-11 2175 ax-12 2188 ax-13 2383 ax-ext 2732 ax-sep 4925 ax-nul 4933 ax-pow 4984 ax-pr 5047 ax-un 7106 ax-cnex 10176 ax-resscn 10177 ax-1cn 10178 ax-icn 10179 ax-addcl 10180 ax-addrcl 10181 ax-mulcl 10182 ax-mulrcl 10183 ax-mulcom 10184 ax-addass 10185 ax-mulass 10186 ax-distr 10187 ax-i2m1 10188 ax-1ne0 10189 ax-1rid 10190 ax-rnegex 10191 ax-rrecex 10192 ax-cnre 10193 ax-pre-lttri 10194 ax-pre-lttrn 10195 ax-pre-ltadd 10196 ax-pre-mulgt0 10197 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1627 df-ex 1846 df-nf 1851 df-sb 2039 df-eu 2603 df-mo 2604 df-clab 2739 df-cleq 2745 df-clel 2748 df-nfc 2883 df-ne 2925 df-nel 3028 df-ral 3047 df-rex 3048 df-reu 3049 df-rab 3051 df-v 3334 df-sbc 3569 df-csb 3667 df-dif 3710 df-un 3712 df-in 3714 df-ss 3721 df-pss 3723 df-nul 4051 df-if 4223 df-pw 4296 df-sn 4314 df-pr 4316 df-tp 4318 df-op 4320 df-uni 4581 df-int 4620 df-iun 4666 df-br 4797 df-opab 4857 df-mpt 4874 df-tr 4897 df-id 5166 df-eprel 5171 df-po 5179 df-so 5180 df-fr 5217 df-we 5219 df-xp 5264 df-rel 5265 df-cnv 5266 df-co 5267 df-dm 5268 df-rn 5269 df-res 5270 df-ima 5271 df-pred 5833 df-ord 5879 df-on 5880 df-lim 5881 df-suc 5882 df-iota 6004 df-fun 6043 df-fn 6044 df-f 6045 df-f1 6046 df-fo 6047 df-f1o 6048 df-fv 6049 df-riota 6766 df-ov 6808 df-oprab 6809 df-mpt2 6810 df-om 7223 df-1st 7325 df-2nd 7326 df-wrecs 7568 df-recs 7629 df-rdg 7667 df-1o 7721 df-er 7903 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-card 8947 df-pnf 10260 df-mnf 10261 df-xr 10262 df-ltxr 10263 df-le 10264 df-sub 10452 df-neg 10453 df-nn 11205 df-n0 11477 df-z 11562 df-uz 11872 df-fz 12512 df-hash 13304 |
This theorem is referenced by: hashge1 13362 lennncl 13503 lswlgt0cl 13535 wrdind 13668 wrd2ind 13669 incexc 14760 incexc2 14761 ramub1 15926 gsumwmhm 17575 psgnunilem5 18106 psgnunilem4 18109 gexcl2 18196 sylow1lem3 18207 sylow1lem5 18209 pgpfi 18212 pgpfi2 18213 sylow2alem2 18225 sylow2blem3 18229 slwhash 18231 fislw 18232 sylow3lem3 18236 sylow3lem4 18237 efgsp1 18342 efgsres 18343 efgredlem 18352 lt6abl 18488 ablfacrp2 18658 ablfac1lem 18659 ablfac1b 18661 ablfac1c 18662 ablfac1eu 18664 pgpfac1lem2 18666 pgpfac1lem3a 18667 pgpfaclem2 18673 ablfaclem3 18678 lebnumlem3 22955 birthdaylem3 24871 birthday 24872 amgmlem 24907 amgm 24908 musum 25108 dchrabs 25176 dchrisum0flblem1 25388 cusgrrusgr 26679 wlkiswwlksupgr2 26978 frgrreg 27554 tgoldbachgtda 31040 derangfmla 31471 erdszelem2 31473 rrndstprj2 33935 rrncmslem 33936 rrnequiv 33939 isnumbasgrplem3 38169 fzisoeu 40005 fourierdlem54 40872 fourierdlem103 40921 fourierdlem104 40922 qndenserrnbllem 41009 ovnhoilem1 41313 hoiqssbllem1 41334 hoiqssbllem2 41335 hoiqssbllem3 41336 vonsn 41403 amgmlemALT 43054 |
Copyright terms: Public domain | W3C validator |