![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashnn0pnf | Structured version Visualization version GIF version |
Description: The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 13317? (Contributed by Alexander van der Vekens, 6-Dec-2017.) |
Ref | Expression |
---|---|
hashnn0pnf | ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashf 13315 | . . . 4 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
2 | 1 | a1i 11 | . . 3 ⊢ (𝑀 ∈ 𝑉 → ♯:V⟶(ℕ0 ∪ {+∞})) |
3 | elex 3348 | . . 3 ⊢ (𝑀 ∈ 𝑉 → 𝑀 ∈ V) | |
4 | 2, 3 | ffvelrnd 6519 | . 2 ⊢ (𝑀 ∈ 𝑉 → (♯‘𝑀) ∈ (ℕ0 ∪ {+∞})) |
5 | elun 3892 | . . 3 ⊢ ((♯‘𝑀) ∈ (ℕ0 ∪ {+∞}) ↔ ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) ∈ {+∞})) | |
6 | elsni 4334 | . . . 4 ⊢ ((♯‘𝑀) ∈ {+∞} → (♯‘𝑀) = +∞) | |
7 | 6 | orim2i 541 | . . 3 ⊢ (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) ∈ {+∞}) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) |
8 | 5, 7 | sylbi 207 | . 2 ⊢ ((♯‘𝑀) ∈ (ℕ0 ∪ {+∞}) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) |
9 | 4, 8 | syl 17 | 1 ⊢ (𝑀 ∈ 𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∨ wo 382 = wceq 1628 ∈ wcel 2135 Vcvv 3336 ∪ cun 3709 {csn 4317 ⟶wf 6041 ‘cfv 6045 +∞cpnf 10259 ℕ0cn0 11480 ♯chash 13307 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1867 ax-4 1882 ax-5 1984 ax-6 2050 ax-7 2086 ax-8 2137 ax-9 2144 ax-10 2164 ax-11 2179 ax-12 2192 ax-13 2387 ax-ext 2736 ax-sep 4929 ax-nul 4937 ax-pow 4988 ax-pr 5051 ax-un 7110 ax-cnex 10180 ax-resscn 10181 ax-1cn 10182 ax-icn 10183 ax-addcl 10184 ax-addrcl 10185 ax-mulcl 10186 ax-mulrcl 10187 ax-mulcom 10188 ax-addass 10189 ax-mulass 10190 ax-distr 10191 ax-i2m1 10192 ax-1ne0 10193 ax-1rid 10194 ax-rnegex 10195 ax-rrecex 10196 ax-cnre 10197 ax-pre-lttri 10198 ax-pre-lttrn 10199 ax-pre-ltadd 10200 ax-pre-mulgt0 10201 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1073 df-3an 1074 df-tru 1631 df-ex 1850 df-nf 1855 df-sb 2043 df-eu 2607 df-mo 2608 df-clab 2743 df-cleq 2749 df-clel 2752 df-nfc 2887 df-ne 2929 df-nel 3032 df-ral 3051 df-rex 3052 df-reu 3053 df-rab 3055 df-v 3338 df-sbc 3573 df-csb 3671 df-dif 3714 df-un 3716 df-in 3718 df-ss 3725 df-pss 3727 df-nul 4055 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4585 df-int 4624 df-iun 4670 df-br 4801 df-opab 4861 df-mpt 4878 df-tr 4901 df-id 5170 df-eprel 5175 df-po 5183 df-so 5184 df-fr 5221 df-we 5223 df-xp 5268 df-rel 5269 df-cnv 5270 df-co 5271 df-dm 5272 df-rn 5273 df-res 5274 df-ima 5275 df-pred 5837 df-ord 5883 df-on 5884 df-lim 5885 df-suc 5886 df-iota 6008 df-fun 6047 df-fn 6048 df-f 6049 df-f1 6050 df-fo 6051 df-f1o 6052 df-fv 6053 df-riota 6770 df-ov 6812 df-oprab 6813 df-mpt2 6814 df-om 7227 df-wrecs 7572 df-recs 7633 df-rdg 7671 df-er 7907 df-en 8118 df-dom 8119 df-sdom 8120 df-fin 8121 df-card 8951 df-pnf 10264 df-mnf 10265 df-xr 10266 df-ltxr 10267 df-le 10268 df-sub 10456 df-neg 10457 df-nn 11209 df-n0 11481 df-xnn0 11552 df-z 11566 df-uz 11876 df-hash 13308 |
This theorem is referenced by: hashnnn0genn0 13321 hashnemnf 13322 hashv01gt1 13323 hashneq0 13343 hashinfxadd 13362 hashge2el2difr 13451 tgldimor 25592 |
Copyright terms: Public domain | W3C validator |