MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  hashnn0pnf Structured version   Visualization version   GIF version

Theorem hashnn0pnf 13320
Description: The value of the hash function for a set is either a nonnegative integer or positive infinity. TODO-AV: mark as OBSOLETE and replace it by hashxnn0 13317? (Contributed by Alexander van der Vekens, 6-Dec-2017.)
Assertion
Ref Expression
hashnn0pnf (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))

Proof of Theorem hashnn0pnf
StepHypRef Expression
1 hashf 13315 . . . 4 ♯:V⟶(ℕ0 ∪ {+∞})
21a1i 11 . . 3 (𝑀𝑉 → ♯:V⟶(ℕ0 ∪ {+∞}))
3 elex 3348 . . 3 (𝑀𝑉𝑀 ∈ V)
42, 3ffvelrnd 6519 . 2 (𝑀𝑉 → (♯‘𝑀) ∈ (ℕ0 ∪ {+∞}))
5 elun 3892 . . 3 ((♯‘𝑀) ∈ (ℕ0 ∪ {+∞}) ↔ ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) ∈ {+∞}))
6 elsni 4334 . . . 4 ((♯‘𝑀) ∈ {+∞} → (♯‘𝑀) = +∞)
76orim2i 541 . . 3 (((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) ∈ {+∞}) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
85, 7sylbi 207 . 2 ((♯‘𝑀) ∈ (ℕ0 ∪ {+∞}) → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
94, 8syl 17 1 (𝑀𝑉 → ((♯‘𝑀) ∈ ℕ0 ∨ (♯‘𝑀) = +∞))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wo 382   = wceq 1628  wcel 2135  Vcvv 3336  cun 3709  {csn 4317  wf 6041  cfv 6045  +∞cpnf 10259  0cn0 11480  chash 13307
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1867  ax-4 1882  ax-5 1984  ax-6 2050  ax-7 2086  ax-8 2137  ax-9 2144  ax-10 2164  ax-11 2179  ax-12 2192  ax-13 2387  ax-ext 2736  ax-sep 4929  ax-nul 4937  ax-pow 4988  ax-pr 5051  ax-un 7110  ax-cnex 10180  ax-resscn 10181  ax-1cn 10182  ax-icn 10183  ax-addcl 10184  ax-addrcl 10185  ax-mulcl 10186  ax-mulrcl 10187  ax-mulcom 10188  ax-addass 10189  ax-mulass 10190  ax-distr 10191  ax-i2m1 10192  ax-1ne0 10193  ax-1rid 10194  ax-rnegex 10195  ax-rrecex 10196  ax-cnre 10197  ax-pre-lttri 10198  ax-pre-lttrn 10199  ax-pre-ltadd 10200  ax-pre-mulgt0 10201
This theorem depends on definitions:  df-bi 197  df-or 384  df-an 385  df-3or 1073  df-3an 1074  df-tru 1631  df-ex 1850  df-nf 1855  df-sb 2043  df-eu 2607  df-mo 2608  df-clab 2743  df-cleq 2749  df-clel 2752  df-nfc 2887  df-ne 2929  df-nel 3032  df-ral 3051  df-rex 3052  df-reu 3053  df-rab 3055  df-v 3338  df-sbc 3573  df-csb 3671  df-dif 3714  df-un 3716  df-in 3718  df-ss 3725  df-pss 3727  df-nul 4055  df-if 4227  df-pw 4300  df-sn 4318  df-pr 4320  df-tp 4322  df-op 4324  df-uni 4585  df-int 4624  df-iun 4670  df-br 4801  df-opab 4861  df-mpt 4878  df-tr 4901  df-id 5170  df-eprel 5175  df-po 5183  df-so 5184  df-fr 5221  df-we 5223  df-xp 5268  df-rel 5269  df-cnv 5270  df-co 5271  df-dm 5272  df-rn 5273  df-res 5274  df-ima 5275  df-pred 5837  df-ord 5883  df-on 5884  df-lim 5885  df-suc 5886  df-iota 6008  df-fun 6047  df-fn 6048  df-f 6049  df-f1 6050  df-fo 6051  df-f1o 6052  df-fv 6053  df-riota 6770  df-ov 6812  df-oprab 6813  df-mpt2 6814  df-om 7227  df-wrecs 7572  df-recs 7633  df-rdg 7671  df-er 7907  df-en 8118  df-dom 8119  df-sdom 8120  df-fin 8121  df-card 8951  df-pnf 10264  df-mnf 10265  df-xr 10266  df-ltxr 10267  df-le 10268  df-sub 10456  df-neg 10457  df-nn 11209  df-n0 11481  df-xnn0 11552  df-z 11566  df-uz 11876  df-hash 13308
This theorem is referenced by:  hashnnn0genn0  13321  hashnemnf  13322  hashv01gt1  13323  hashneq0  13343  hashinfxadd  13362  hashge2el2difr  13451  tgldimor  25592
  Copyright terms: Public domain W3C validator