![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > hashle2pr | Structured version Visualization version GIF version |
Description: A nonempty set of size less than or equal to two is an unordered pair of sets. (Contributed by AV, 24-Nov-2021.) |
Ref | Expression |
---|---|
hashle2pr | ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((#‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hashxnn0 13167 | . . . . . . 7 ⊢ (𝑃 ∈ 𝑉 → (#‘𝑃) ∈ ℕ0*) | |
2 | xnn0le2is012 12114 | . . . . . . 7 ⊢ (((#‘𝑃) ∈ ℕ0* ∧ (#‘𝑃) ≤ 2) → ((#‘𝑃) = 0 ∨ (#‘𝑃) = 1 ∨ (#‘𝑃) = 2)) | |
3 | 1, 2 | sylan 487 | . . . . . 6 ⊢ ((𝑃 ∈ 𝑉 ∧ (#‘𝑃) ≤ 2) → ((#‘𝑃) = 0 ∨ (#‘𝑃) = 1 ∨ (#‘𝑃) = 2)) |
4 | 3 | ex 449 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → ((#‘𝑃) ≤ 2 → ((#‘𝑃) = 0 ∨ (#‘𝑃) = 1 ∨ (#‘𝑃) = 2))) |
5 | hasheq0 13192 | . . . . . . . . 9 ⊢ (𝑃 ∈ 𝑉 → ((#‘𝑃) = 0 ↔ 𝑃 = ∅)) | |
6 | eqneqall 2834 | . . . . . . . . 9 ⊢ (𝑃 = ∅ → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) | |
7 | 5, 6 | syl6bi 243 | . . . . . . . 8 ⊢ (𝑃 ∈ 𝑉 → ((#‘𝑃) = 0 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
8 | 7 | com12 32 | . . . . . . 7 ⊢ ((#‘𝑃) = 0 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
9 | hash1snb 13245 | . . . . . . . . . . 11 ⊢ (𝑃 ∈ 𝑉 → ((#‘𝑃) = 1 ↔ ∃𝑐 𝑃 = {𝑐})) | |
10 | vex 3234 | . . . . . . . . . . . . 13 ⊢ 𝑐 ∈ V | |
11 | preq12 4302 | . . . . . . . . . . . . . . 15 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐, 𝑐}) | |
12 | dfsn2 4223 | . . . . . . . . . . . . . . 15 ⊢ {𝑐} = {𝑐, 𝑐} | |
13 | 11, 12 | syl6eqr 2703 | . . . . . . . . . . . . . 14 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → {𝑎, 𝑏} = {𝑐}) |
14 | 13 | eqeq2d 2661 | . . . . . . . . . . . . 13 ⊢ ((𝑎 = 𝑐 ∧ 𝑏 = 𝑐) → (𝑃 = {𝑎, 𝑏} ↔ 𝑃 = {𝑐})) |
15 | 10, 10, 14 | spc2ev 3332 | . . . . . . . . . . . 12 ⊢ (𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
16 | 15 | exlimiv 1898 | . . . . . . . . . . 11 ⊢ (∃𝑐 𝑃 = {𝑐} → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
17 | 9, 16 | syl6bi 243 | . . . . . . . . . 10 ⊢ (𝑃 ∈ 𝑉 → ((#‘𝑃) = 1 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
18 | 17 | imp 444 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (#‘𝑃) = 1) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) |
19 | 18 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (#‘𝑃) = 1) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
20 | 19 | expcom 450 | . . . . . . 7 ⊢ ((#‘𝑃) = 1 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
21 | hash2pr 13289 | . . . . . . . . 9 ⊢ ((𝑃 ∈ 𝑉 ∧ (#‘𝑃) = 2) → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}) | |
22 | 21 | a1d 25 | . . . . . . . 8 ⊢ ((𝑃 ∈ 𝑉 ∧ (#‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
23 | 22 | expcom 450 | . . . . . . 7 ⊢ ((#‘𝑃) = 2 → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
24 | 8, 20, 23 | 3jaoi 1431 | . . . . . 6 ⊢ (((#‘𝑃) = 0 ∨ (#‘𝑃) = 1 ∨ (#‘𝑃) = 2) → (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
25 | 24 | com12 32 | . . . . 5 ⊢ (𝑃 ∈ 𝑉 → (((#‘𝑃) = 0 ∨ (#‘𝑃) = 1 ∨ (#‘𝑃) = 2) → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
26 | 4, 25 | syld 47 | . . . 4 ⊢ (𝑃 ∈ 𝑉 → ((#‘𝑃) ≤ 2 → (𝑃 ≠ ∅ → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
27 | 26 | com23 86 | . . 3 ⊢ (𝑃 ∈ 𝑉 → (𝑃 ≠ ∅ → ((#‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏}))) |
28 | 27 | imp 444 | . 2 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((#‘𝑃) ≤ 2 → ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
29 | fveq2 6229 | . . . 4 ⊢ (𝑃 = {𝑎, 𝑏} → (#‘𝑃) = (#‘{𝑎, 𝑏})) | |
30 | hashprlei 13288 | . . . . 5 ⊢ ({𝑎, 𝑏} ∈ Fin ∧ (#‘{𝑎, 𝑏}) ≤ 2) | |
31 | 30 | simpri 477 | . . . 4 ⊢ (#‘{𝑎, 𝑏}) ≤ 2 |
32 | 29, 31 | syl6eqbr 4724 | . . 3 ⊢ (𝑃 = {𝑎, 𝑏} → (#‘𝑃) ≤ 2) |
33 | 32 | exlimivv 1900 | . 2 ⊢ (∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏} → (#‘𝑃) ≤ 2) |
34 | 28, 33 | impbid1 215 | 1 ⊢ ((𝑃 ∈ 𝑉 ∧ 𝑃 ≠ ∅) → ((#‘𝑃) ≤ 2 ↔ ∃𝑎∃𝑏 𝑃 = {𝑎, 𝑏})) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 196 ∧ wa 383 ∨ w3o 1053 = wceq 1523 ∃wex 1744 ∈ wcel 2030 ≠ wne 2823 ∅c0 3948 {csn 4210 {cpr 4212 class class class wbr 4685 ‘cfv 5926 Fincfn 7997 0cc0 9974 1c1 9975 ≤ cle 10113 2c2 11108 ℕ0*cxnn0 11401 #chash 13157 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1762 ax-4 1777 ax-5 1879 ax-6 1945 ax-7 1981 ax-8 2032 ax-9 2039 ax-10 2059 ax-11 2074 ax-12 2087 ax-13 2282 ax-ext 2631 ax-rep 4804 ax-sep 4814 ax-nul 4822 ax-pow 4873 ax-pr 4936 ax-un 6991 ax-cnex 10030 ax-resscn 10031 ax-1cn 10032 ax-icn 10033 ax-addcl 10034 ax-addrcl 10035 ax-mulcl 10036 ax-mulrcl 10037 ax-mulcom 10038 ax-addass 10039 ax-mulass 10040 ax-distr 10041 ax-i2m1 10042 ax-1ne0 10043 ax-1rid 10044 ax-rnegex 10045 ax-rrecex 10046 ax-cnre 10047 ax-pre-lttri 10048 ax-pre-lttrn 10049 ax-pre-ltadd 10050 ax-pre-mulgt0 10051 |
This theorem depends on definitions: df-bi 197 df-or 384 df-an 385 df-3or 1055 df-3an 1056 df-tru 1526 df-ex 1745 df-nf 1750 df-sb 1938 df-eu 2502 df-mo 2503 df-clab 2638 df-cleq 2644 df-clel 2647 df-nfc 2782 df-ne 2824 df-nel 2927 df-ral 2946 df-rex 2947 df-reu 2948 df-rmo 2949 df-rab 2950 df-v 3233 df-sbc 3469 df-csb 3567 df-dif 3610 df-un 3612 df-in 3614 df-ss 3621 df-pss 3623 df-nul 3949 df-if 4120 df-pw 4193 df-sn 4211 df-pr 4213 df-tp 4215 df-op 4217 df-uni 4469 df-int 4508 df-iun 4554 df-br 4686 df-opab 4746 df-mpt 4763 df-tr 4786 df-id 5053 df-eprel 5058 df-po 5064 df-so 5065 df-fr 5102 df-we 5104 df-xp 5149 df-rel 5150 df-cnv 5151 df-co 5152 df-dm 5153 df-rn 5154 df-res 5155 df-ima 5156 df-pred 5718 df-ord 5764 df-on 5765 df-lim 5766 df-suc 5767 df-iota 5889 df-fun 5928 df-fn 5929 df-f 5930 df-f1 5931 df-fo 5932 df-f1o 5933 df-fv 5934 df-riota 6651 df-ov 6693 df-oprab 6694 df-mpt2 6695 df-om 7108 df-1st 7210 df-2nd 7211 df-wrecs 7452 df-recs 7513 df-rdg 7551 df-1o 7605 df-2o 7606 df-oadd 7609 df-er 7787 df-en 7998 df-dom 7999 df-sdom 8000 df-fin 8001 df-card 8803 df-cda 9028 df-pnf 10114 df-mnf 10115 df-xr 10116 df-ltxr 10117 df-le 10118 df-sub 10306 df-neg 10307 df-nn 11059 df-2 11117 df-n0 11331 df-xnn0 11402 df-z 11416 df-uz 11726 df-fz 12365 df-hash 13158 |
This theorem is referenced by: hashle2prv 13298 |
Copyright terms: Public domain | W3C validator |